
Secure E-commerce Website
Vulnerability Assessment & DevSecOps Automation

Stanley Shaw

5th July 2025

github.com/stanly363/Secure-ecomerse-website

1

https://github.com/stanly363/Secure-ecomerse-website

Abstract

This report presents a comprehensive security and DevSecOps evaluation of the
“SecureCart” application. In Part A, I document my static and dynamic security
assessments, detailing the tools used, the vulnerabilities discovered, and the remedi-
ation strategies applied. In Part B, I describe the design and implementation of a
CI/CD pipeline, explaining how security testing was integrated into the automated
build and deployment process. Throughout the report, I reflect on the challenges
faced, solutions implemented, and key lessons learned in building a secure, auto-
mated development workflow.

2

Contents
1 Introduction 4

2 Part A — Vulnerability Assessment 5
2.1 OWASP ZAP Findings . 5

2.1.1 Missing Content-Security-Policy Header 5
2.1.2 Out-of-date Bootstrap 4.3.1 Library 7

2.2 Snyk Dependency Findings . 9
2.2.1 Out-of-date Django 4.2.16 Version 9

2.3 Theoretical Vulnerabilities . 11
2.3.1 Insufficient Object-Level Authorisation Checks 11
2.3.2 Insecure Custom Script Execution (Code Injection Risk) 13

3 CI/CD Pipeline Implementation 15
3.1 Implementing CI/CD Pipelines . 15
3.2 Pipeline Overview . 15
3.3 Summary . 23
3.4 CI/CD Pipeline Security Testing Reflection 24
3.5 Post-deployment Vulnerability Remediation 25

3.5.1 Forms Blocked by CSP Sandbox 25
3.5.2 SRI Mismatch on Bootstrap . 26
3.5.3 Strict CORS on Static Assets . 26

4 Lessons Learned 28
4.1 Early Integration of Security (Shift-Left) 28
4.2 Defence in Depth through Declarative Policies 28
4.3 Continuous Monitoring and Feedback Loops 28
4.4 Least Privilege and Immutable Infrastructure 28

5 Future Work 29

6 Conclusion 30

3

1 Introduction

This report highlights a full DevSecOps workflow for the Secure Cart application. I first
automated vulnerability discovery with OWASP ZAP for dynamic testing, and used Snyk
for dependency and code analysis. I then verified each issue, applied code or configur-
ation fixes, and reran the scanners to confirm closure. To ensure those controls remain
effective, I embedded these same tools into a GitHub Actions pipeline that installs de-
pendencies, runs unit tests, executes snyk tests with strict severity thresholds, launches
a headless ZAP baseline scan, and deploys to a staging server only if every security gate
passes—thereby preventing vulnerable code or packages from reaching production.

4

2 Part A — Vulnerability Assessment

This section documents my systematic security review of the running application. OWASP
ZAP was ran on the site to uncover runtime weaknesses, I then validated and priorit-
ised each finding before implementing code-or configuration-level fixes and re-scanning to
confirm that the vulnerabilities were fully mitigated [OWASP, 2025].

2.1 OWASP ZAP Findings

OWASP ZAP was configured in “spider → passive-scan → active-scan” mode against
the localhost instance running over HTTPS [OWASP, 2022]. Two findings stood out
because they affect every page of the site and significantly widen the attack surface: an
absent Content-Security-Policy header [Django CSP, 2024] and an outdated Boot-
strap runtime library [Bootstrap Team, 2024]. The sections below summarise the risk,
evidence and remediation for each.

2.1.1 Missing Content-Security-Policy Header

During ZAP’s passive crawl of the application, every HTML response—beginning with the
login page—was returned without a Content-Security-Policy header. This omission
leaves modern browsers with no instructions on which external scripts, styles, or frames
should be trusted.

Risk
Without a Content-Security-Policy header the browser imposes no restrictions on
script, style, image, frame or connect sources [OWASP CSP, 2025]. An attacker who
can inject a single <script> tag—via reflected or stored XSS, compromised CDN, or a
malicious third-party ad—can execute arbitrary JavaScript in every shopper’s session,
enabling credential theft, card-skimming, or full account takeover.

Evidence
Figure 1 shows ZAP’s response for /accounts/login/. The missing Content-Security-Policy
triggers ZAP’s medium-severity warning (CWE-693), indicating the page is exposed to
content-injection risks.

Figure 1: ZAP evidence – no Content-Security-Policy in the response

5

Remediation
In order to fix this, I installed django-csp, inserted csp.middleware.CSPMiddleware

near the top of the MIDDLEWARE list in settings.py, and declared a restrictive policy, as
shown in Figure 2 [Django CSP, 2024].

Figure 2: Content-Security-Policy django implementation code

All pages now post with a Content-Security-Policy header, closing the gap ZAP
flagged and protecting the application against XSS, data-injection, and framing attacks.

Figure 3: ZAP evidence – Content-Security-Policy present in the response

Impact Reduction.
With the policy enforced, any injected script from an external domain is blocked; inline
scripts are disallowed unless whitelisted via nonce/hashes, closing the most common
exploit path for card-skimming malware in e-commerce sites.

6

2.1.2 Out-of-date Bootstrap 4.3.1 Library

During ZAP’s passive analysis, Retire.js [Retire.js Community, 2020] reported that the
application bootstrap.bundle.min.js version 4.3.1 was outdated, and known to be
vulnerable [Bootstrap Team, 2024].

Risk
Bootstrap 4.3.1 is affected by two medium-severity XSS vulnerability’s:

• CVE-2019-8331 – Tooltips / Popovers. Whatever you put in the data-template
field is copied straight onto the page [National Vulnerability Database, 2025b]. If
an attacker slips in something like , it fires when anyone
hovers the tooltip.

• CVE-2018-20677 – Affix. The old Affix plugin does the same with its data-target
field. A harmful value there runs as soon as the page loads or scrolls [National
Vulnerability Database, 2025a].

If untrusted data is echoed into those attributes an attacker can inject arbitrary HTM-
L/JavaScript, leading to session theft or full account compromise.

Evidence
Figure 4 shows ZAP Retire.js flagging the vulnerability together with providing direct
links to both CVEs.

Figure 4: Retire.js flags Bootstrap 4.3.1 with two XSS CVEs

7

Remediation
To fix this, I upgraded to Bootstrap 5.3.6 and added sub-resource integrity (SRI) to the
CDN link ensuring that the correct CDN is loaded:

1. Updated bootstrap to version 5.3.6.

2. Added integrity="sha384-..." and crossorigin="anonymous" to the CDN script
tag.

The updated Bootstrap integration with SRI is shown in Figure 5, demonstrating the
inclusion of the integrity and crossorigin attributes to protect against CDN tampering
[Bootstrap Team, 2024].

Figure 5: SRI integrity integration

The updated file hash now passes Retire.js, and the correct updated version of bootstrap
is loaded as shown in Figure 6.

Figure 6: Updated Bootstrap version 5.3.6 now used

Impact reduction
With the library patched, inline scripts nonce-protected, and server-side sanitisation
maintained via django, the attack surface for tooltip-based XSS is effectively closed.

8

2.2 Snyk Dependency Findings

2.2.1 Out-of-date Django 4.2.16 Version

During Snyk’s dependency scan of the requirements.txt file, Django version 4.2.16 was
flagged as vulnerable to multiple high and critical severity issues [Snyk Ltd., 2025].

Risk
Django 4.2.16 has the following known vulnerabilities:

• Command Injection (High Severity). Vulnerable template filters or manage-
ment commands could allow attackers to execute system commands if user input is
not properly handled. This could result in complete system compromise [National
Vulnerability Database, 2024a].

• Resource Allocation Without Limits (High Severity). Django does not
enforce limits on certain operations, such as file uploads or request processing, which
could lead to denial of service if an attacker forces the server to handle excessive
load [National Vulnerability Database, 2025c].

• SQL Injection (Critical Severity). Django’s ORM in version 4.2.16 may allow
attackers to inject malicious SQL through untrusted data if query construction is
not properly sanitized, risking full database compromise [National Vulnerability
Database, 2024b].

Evidence
Figure 7 shows Snyk flagging the Django package with three identified security risks,
including one critical SQL injection vulnerability.

Figure 7: Snyk flags Django 4.2.16 with multiple high and critical severity issues

9

Remediation
In order to patch these vulnerabilities, I upgraded Django to the latest patched release
to resolve these issues. The updated requirements.txt now specifies Django 5.1.9, as
shown in Figure 8 and the snyk dependency scan highlights no vulnerabilities (see Figure 9
[Django Software Foundation, 2025a].

Figure 8: Updated requirements.txt specifying Django 5.1.9

Figure 9: Successful snyk dependency scan highlighting no known vulnerabilities

Impact reduction
By upgrading Django to the latest version, the risk of command injection, denial of
service, and SQL injection is significantly reduced. This ensures the application runs on
a secure, supported framework with up-to-date security patches.

10

2.3 Theoretical Vulnerabilities

Django’s secure-by-default framework helps prevent many common vulnerabilities such
as Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), SQL Injection, and
Broken Authentication by providing built-in protections. Features like CSRF tokens,
automatic input sanitization in templates, ORM query parameterization, and strong
password hashing with PBKDF2 reduce the attack surface significantly. As a result, dur-
ing manual review, no additional confirmed major vulnerabilities beyond those identified
by automated tools were found as seen in Figure 10.

Figure 10: Successful snyk scan highlighting no known vulnerabilities

However, two theoretical vulnerabilities based on design patterns and common developer
mistakes are worth noting:

2.3.1 Insufficient Object-Level Authorisation Checks

Django provides model-level and view-level permission checks, but it does not enforce
object-level access control by default. Developers are responsible for validating that a
user has permission to access or modify a specific object instance.

Risk
If object-level checks are missing, a user could potentially manipulate URLs or form data
to view, edit, or delete objects that they do not own. This could include orders, user
profiles, or administrative records [OWASP Cheat Sheet, 2024a].

11

Example Vulnerable Code
Figure 12 shows a vulnerable implementation where object ownership is not checked,
allowing attackers to access other users’ orders by modifying the URL.

Figure 11: Vulnerable view function missing user ownership validation

Example Scenario
A user changes a URL like /orders/5 to /orders/6 and successfully accesses another
user’s order details because no object-level permission check is enforced in the view.

Remediation
Use Django’s get_object_or_404 or custom access checks combined with request.user

validation to ensure that the logged-in user owns the object being accessed. Implement
check_object_permissions() or similar logic to enforce object-level security [Django
Software Foundation, 2025b].

Figure 12: Fixed view function including user ownership validation

12

2.3.2 Insecure Custom Script Execution (Code Injection Risk)

While Django itself provides secure execution environments, developers sometimes in-
troduce custom admin tools, management commands, or evaluation scripts that rely on
eval(), exec(), or importlib.import_module() using user-supplied or environment-
provided input [OWASP Cheat Sheet, 2024b].

Risk
If user input or environment variables are passed into dangerous Python functions like
exec() or eval() without proper validation, attackers could inject and execute arbitrary
Python code on the server.

Example code
Figure 13 shows a vulnerable implementation that uses exec() on user-supplied input,
allowing an attacker to execute arbitrary Python commands.

Figure 13: Vulnerable code using exec() on untrusted user input

Example Scenario
A developer writes a custom feature that loads modules dynamically based on user input
or environment variables without proper validation. An attacker manipulates this input
to load malicious modules or execute arbitrary commands. Figure 13 shows a vulnerable
implementation that uses exec() on user-supplied input, allowing an attacker to execute
arbitrary Python commands.

13

Remediation
Avoid using eval(), exec(), or dynamic imports with untrusted input. Validate and
whitelist any allowed module or command names, and use safer alternatives such as
dictionary lookups or predefined mappings [OWASP Cheat Sheet, 2024b]. Figure 14
shows a fixed implementation that restricts execution to predefined safe commands using
a dictionary lookup.

Figure 14: Secure code using a dictionary lookup to limit allowed commands

These theoretical risks emphasise the need for secure coding practices, thorough code
reviews, and awareness of Django’s security model to ensure robust protection beyond
built-in defaults.

14

3 CI/CD Pipeline Implementation

3.1 Implementing CI/CD Pipelines

My CI/CD pipeline for SecureCart is implemented using GitHub Actions, in line with
DevSecOps best practice guidelines to automate the build, test, and deployment stages
[GitHub Docs, 2025]. I began by forking the codebase from into a dedicated ci-cd branch
and creating a .github/workflows/ci-cd.yml file. My key motivations for adopting
CI/CD include:

• Rapid feedback: Automated checks on each commit surface failures immediately,
reducing the time between defect introduction and detection.

• Reproducibility: Defining the steps as code ensures every runner executes the
same sequence, eliminating “works on my machine” issues.

• Developer confidence: A passing pipeline signals stability, enabling more fre-
quent merges and shorter release cycles.

3.2 Pipeline Overview

The pipeline consists of four major phases: Source Control, Build & Test, Security Scan-
ning, and Deployment. Each phase corresponds to one or more jobs in GitHub Actions.
The pipeline is triggered by both push and pull_request events, specifically when tar-
geting the main branch, as shown in Figure 15. In the following sections, I walk through
each stage of my GitHub Actions workflow in turn—showing how I trigger the pipeline,
install dependencies, run tests and linters, perform security scans, build and run the
Docker image, and finally deploy to production.

Source Control Trigger
All pipeline runs are triggered on both push and pull_request events, but only when
targeting the main branch. Figure 15 shows the GitHub Actions UI confirming these
settings.

Figure 15: GitHub Actions “on: [push, pull_request]” filtered to “branches: [main]”.

15

Dependency Installation
Dependencies are installed via a two-step script that first upgrades pip and then installs
from requirements.txt, ensuring reproducible builds [PIP Team, 2025]. See Figure 16
for the workflow screenshot.

Figure 16: “Install dependencies” step in GitHub Actions.

Unit Testing & Linting
Code style is enforced with flake8, and business logic validated via Django’s test suite
[Flake8 Development Team, 2025]. Figure 17 shows both the lint and test steps in the
workflow. While Figures 18, 19, and 20 show the unit tests that are run by the pipeline
[Django Software Foundation, 2025c].

Figure 17: “Lint with flake8” and “Run Django tests” steps.

Figure 18: Tests verifying item, cart, and order total price computations.

16

Figure 19: Tests checking secret length, URI/QR code generation, and token verification.

Figure 20: Tests validating correct input and detecting password mismatches.

17

Static Application Security Testing (SAST)
A Snyk SAST scan runs against requirements.txt, flagging vulnerable dependencies
and insecure code patterns [Snyk Ltd., 2025] (See Figure 21).

Figure 21: Snyk SAST scan step in GitHub Actions.

Build Docker Image with Layer Caching
After verifying that tests and linting have passed, I package my Django app into a Docker
image using the project’s Dockerfile [Docker, Inc., 2024]. Figure 22 highlights the Dock-
erfile used to build the docker container. While, Figure 23 illustrates the build process,
which leverages docker/build-push-action with layer caching to significantly reduce build
times on subsequent runs.

Figure 22: Dockerfile used to create the application image.

18

Figure 23: Executing docker build to create the application image.

Run Docker Container
With the image ready, I create up a detached container bound to port 8000. As displayed
in Figure 24, this command sets environment varirables and launches the service so I
can interact with a live instance without polluting my local environment [Docker, Inc.,
2025b].

Figure 24: Starting the container in detached mode on port 8000.

19

Wait for App to Be Ready
To ensure the application is initialised, the pipeline actively polls the service before scan-
ning. A ‘curl‘ script awaits a successful response from the container, as shown in Figure 25.

Figure 25: Actively polling the container to confirm it is initialised.

Dynamic Application Security Testing (DAST)
Once the app is up at https://localhost:8000, I initiated a full OWASP ZAP scan to
uncover runtime vulnerabilities [OWASP, 2022]. The configuration for this active scan is
depicted in Figure 26.

Figure 26: OWASP ZAP full-scan step against the running container.

Collect Docker Logs
To aid in troubleshooting, I capture the container’s stdout and stderr into django_debug.log
[Docker, Inc., 2025a]. Figure 27 shows the logging command that preserves any error
traces for later review.

Figure 27: Redirecting container logs into a file for post-scan analysis.

20

https://localhost:8000

Upload Logs
Regardless of success or failure, I upload django_debug.log as an artefact so it’s ac-
cessible in the Actions UI [GitHub Actions Team, 2025]. The upload step is captured in
Figure 28.

Figure 28: Using actions/upload-artifact to store the log file.

Stop Docker Container
To clean up the runner environment, I terminate the container once logs are stored
[Docker, Inc., 2023]. Figure 29 demonstrates the stop command in the workflow.

Figure 29: Stopping the Docker container to free up resources on the runner.

Deploy to Production
When all previous steps succeed on the main branch, I then trigger the production de-
ployment using a Render deploy hook [Render, Inc., 2025]. The hook URL is stored
as the GitHub secret RENDER_DEPLOY_HOOK, and the final workflow step sends a HT-
TPS POST to that endpoint. This initiates a zero-downtime release which builds the
image from the production Dockerfile. This version serves standard HTTP traffic to
work behind Render’s reverse proxy, as opposed to the separate Dockerfile.ci used
for HTTPS-based testing earlier in the pipeline. The Render integration performs the
following tasks:

• Builds the latest production Docker image from securecart/Dockerfile.

• Applies production environment variables (e.g. DJANGO_SECRET_KEY, DATABASE_URL,
STRIPE_SECRET_KEY).

• Runs health checks, swaps traffic to the new container, and retains previous releases
for one-click rollback.

21

Figure 30 shows the conditional GitHub Actions step executing the Render deploy hook,
and Figure 31 shows the corresponding API call to render.

Figure 30: Conditional production deployment step executed for main.

Figure 31: Render API log confirming the Render deploy hook trigger.

Finally, Figure 32 presents the live production landing page hosted using Render at
https://securecart-staging.onrender.com/; as the application is on a free hosting
tier, the service may take a moment to load if it has been inactive.

Figure 32: SecureCart production landing page on Render.

22

https://securecart-staging.onrender.com/

3.3 Summary

The final CI/CD pipeline automates building, testing, securing, and deploying the Django
application. After dependencies are installed, the code undergoes linting, unit testing,
and security scanning (SAST and DAST). The application is then packaged into a Docker
container, with logs captured for troubleshooting. Finally, after successful tests and
scans, the application is deployed to production with zero downtime. This streamlined
process ensures that only secure, tested code reaches production. Figure 33 illustrates
the completed pipeline, highlighting each of the steps involved.

Figure 33: Overview of the completed CI/CD pipeline.

23

3.4 CI/CD Pipeline Security Testing Reflection

Differences in vulnerabilities
During OWASP ZAP’s pre-deployment scan, missing security headers (Content-Security
-Policy) and an outdated bootstrap library were flagged. Post-deployment, additional
issues emerged:

• Forms blocked by CSP sandbox: the sandbox directive lacked allow-forms,
causing all form submissions (login/register) to be silently blocked by the browser
[Mozilla Contributors, 2024].

• SRI mismatch on Bootstrap: the integrity attribute on bootstrap.bundle.min.js

did not match the served file, so the script was blocked entirely [Mozilla Contrib-
utors, 2025b].

• Wildcard CORS on static assets: Access-Control-Allow-Origin:* on CSS
responses exposed static content to any origin, violating least-privilege CORS policy
[Mozilla Contributors, 2025a].

24

3.5 Post-deployment Vulnerability Remediation

To address these post-deployment findings, I implemented the following remediations in
order to fix the vulnerabilities:

3.5.1 Forms Blocked by CSP Sandbox

The browser refused all form submissions because the CSP sandbox directive omitted
allow-forms, as shown by the network error blocking the login form (Figure 34), and
the missing header screenshot (Figure 35). After adding allow-forms, the forms post
normally (Figure 36) [Mozilla Contributors, 2024].

Figure 34: Network error blocking form submissions

Figure 35: Before: CSP sandbox missing allow-forms, blocking forms

Figure 36: After: CSP sandbox updated with allow-forms, forms allowed

25

3.5.2 SRI Mismatch on Bootstrap

The integrity hash for bootstrap.bundle.min.js did not match the file version, so
the script was blocked (Figures 37 and 38) [Mozilla Contributors, 2025b]. Upgrading to
Bootstrap 5.3.6 and using the correct SHA-384 hash allowed the script load (Figure 39).

Figure 37: SRI hash mismatch HTML error

Figure 38: Before: SRI hash mismatch blocking Bootstrap 5.3.6 bundle

Figure 39: After: updated to Bootstrap 5.3.6 with matching integrity hash

3.5.3 Strict CORS on Static Assets

A post-deployment ZAP scan revealed that WhiteNoise [Willison, 2025] was serving
static assets with Access-Control-Allow-Origin:* (see Figure 40). I therefore up-
dated securecart/whitenoise_headers.py (Figure 41) to restrict Access-Control-

Allow-Origin to my secure domain (see Figure 42) [Mozilla Contributors, 2025a].

Figure 40: The ZAP warning highlights the Cross-Domain Misconfiguration

26

Figure 41: The code before injecting a restrictive CORS header

Figure 42: The code after injecting secure Access-Control-Allow-Origin

27

4 Lessons Learned

Through the SecureCart DevSecOps journey, several key insights emerged that highlight
how embedding security into every phase of development enhances both code quality and
delivery speed.

4.1 Early Integration of Security (Shift-Left)

Integrating SAST and lightweight DAST scans into feature branches reduced defect de-
tection time, minimised remediation overhead, and reinforced security ownership across
the development team, aligning with OWASP’s shift-left recommendation and industry
standards [OWASP, 2025; OWASP, 2022].

4.2 Defence in Depth through Declarative Policies

Embedding CSP, HSTS and strict CORS rules in code and infrastructure configurations
created continuous multi-layer enforcement that persists across environments, preventing
reliance on ad-hoc headers. This defence-in-depth approach ensures that if one con-
trol fails, others mitigate exploitation and elevate baseline security [Django CSP, 2024;
OWASP CSP, 2025].

4.3 Continuous Monitoring and Feedback Loops

Versioning security middleware and automating the collection of policy violations es-
tablished a closed feedback loop with robust automated alerts, enabling rapid threat
detection and iterative policy refinement in line with DevSecOps principles [Snyk Ltd.,
2025; Render, Inc., 2025].

4.4 Least Privilege and Immutable Infrastructure

Enforcing least privilege for runtime components and treating builds as disposable further
hardened the attack surface, as rebuild-over-patch deployments ensured unauthorised
changes could not persist and reduced drift between releases [Docker, Inc., 2025b; Docker,
Inc., 2024].

28

5 Future Work

Building on my pipeline, the following future enhancements will strengthen SecureCart’s
security posture and resilience by addressing emerging threats, enforcing compliance, and
automating advanced security checks as the platform scales.

Enhancement Description Potential Threats
Mitigated

Container image
scanning

Integrate tools like Trivy or Clair
into the CI pipeline to scan base
images and dependencies for
OS-level vulnerabilities.

Unpatched CVEs in base
images; privilege escalation;
supply-chain attacks.

Infrastructure-as-
Code analysis

Add Terraform/CloudFormation
security checks (e.g. Checkov,
tfsec) to detect misconfigurations
before provisioning.

Over-permissive IAM roles;
open security groups;
insecure default settings.

Runtime monitoring
& alerting

Deploy a SIEM or EDR solution
(e.g. Sentry, Falco) in staging
and enforce WAF/CSP policies
in production.

Zero-day exploit activity;
anomalous traffic patterns;
undetected XSS or
injection attempts.

Automated rollback
& canary releases

Enhance the Render/deploy
hook workflow to support
gradual traffic shifts and
automatic rollback on
health-check failures.

Faulty releases causing
downtime; configuration
drift; broken security
controls in production.

Performance & load
testing

Incorporate Gatling or k6 into
the pipeline to simulate
real-world loads and detect DoS
vectors.

Denial-of-Service attacks;
resource exhaustion;
scale-out failures.

Table 1: Future Enhancements and Potential Threats Mitigated

29

6 Conclusion

In this project I carried out end-to-end security testing—using OWASP ZAP, Snyk and
flake8—to find and fix missing CSP headers, an outdated Bootstrap library, vulnerable
Django dependencies and other design issues. I then codified those remediations in a
GitHub Actions pipeline that installs dependencies, runs lint and unit tests, performs
SAST and DAST scans, builds and runs a Docker image, captures logs and deploys only
when every security gate passes. By shifting security checks left and automating each
stage, I have created a repeatable workflow that prevents vulnerable code from reaching
production. Going forward, I plan to add container-image scanning, Infrastructure-as-
Code analysis and continuous monitoring to keep SecureCart resilient as new threats
arise.

30

References
Bootstrap Team [2024]. Bootstrap: The most popular HTML, CSS, and JS library. Version

5.3.6; Accessed: 2025-05-19. url: https://getbootstrap.com/.

Django CSP [2024]. django-csp: Content Security Policy for Django. https://github.
com/mozilla/django-csp. Accessed: 2025-05-19.

Django Software Foundation [May 2025a]. Django 5.1.9 Release Notes. https://docs.
djangoproject.com/en/5.2/releases/5.1.9/. Accessed: 2025-05-19.

— [2025b]. Django shortcut functions. https://docs.djangoproject.com/en/5.1/
topics/http/shortcuts/. Documentation for version 5.1; Accessed: 2025-05-19.

— [2025c]. Testing in Django. Accessed: 2025-05-19.

Docker, Inc. [2023]. docker container stop. Accessed: 2025-05-19.

— [2024]. docker buildx build. Accessed: 2025-05-19.

— [2025a]. docker container logs. Accessed: 2025-05-19.

— [2025b]. docker container run. Accessed: 2025-05-19.

Flake8 Development Team [2025]. User Guide. Accessed: 2025-05-19.

GitHub Actions Team [2025]. actions/upload-artifact. https://github.com/actions/
upload-artifact. Accessed: 2025-05-19.

GitHub Docs [2025]. Getting started with GitHub Actions. https://docs.github.com/
articles/getting-started-with-github-actions. Accessed: 2025-05-19.

Mozilla Contributors [2024]. Content Security Policy sandbox Directive. Accessed: 2025-
05-19. MDN Web Docs. url: https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Content-Security-Policy/sandbox.

— [2025a]. HTTP Access-Control-Allow-Origin Header. Accessed: 2025-05-19. MDN
Web Docs. url: https://developer.mozilla.org/en- US/docs/Web/HTTP/
Headers/Access-Control-Allow-Origin.

— [2025b]. Subresource Integrity (SRI) Implementation Guide. Accessed: 2025-05-19.
MDN Web Docs. url: https://developer.mozilla.org/en- US/docs/Web/
Security/Practical_implementation_guides/SRI.

National Vulnerability Database [2024a]. CVE-2024-53907 Detail: Command Injection
via strip_tags/striptags. https://nvd.nist.gov/vuln/detail/CVE-2024-53907.
Accessed: 2025-05-19.

— [2024b]. CVE-2024-53908 Detail: SQL Injection in HasKey JSONField lookup on Or-
acle. https://nvd.nist.gov/vuln/detail/CVE-2024-53908. Accessed: 2025-05-19.

— [2025a]. “CVE-2018-20677 Detail”. In: Accessed: 2025-05-19.

— [2025b]. “CVE-2019-8331 Detail”. In: Accessed: 2025-05-19.

31

https://getbootstrap.com/
https://github.com/mozilla/django-csp
https://github.com/mozilla/django-csp
https://docs.djangoproject.com/en/5.2/releases/5.1.9/
https://docs.djangoproject.com/en/5.2/releases/5.1.9/
https://docs.djangoproject.com/en/5.1/topics/http/shortcuts/
https://docs.djangoproject.com/en/5.1/topics/http/shortcuts/
https://github.com/actions/upload-artifact
https://github.com/actions/upload-artifact
https://docs.github.com/articles/getting-started-with-github-actions
https://docs.github.com/articles/getting-started-with-github-actions
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/sandbox
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/sandbox
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/Security/Practical_implementation_guides/SRI
https://developer.mozilla.org/en-US/docs/Web/Security/Practical_implementation_guides/SRI
https://nvd.nist.gov/vuln/detail/CVE-2024-53907
https://nvd.nist.gov/vuln/detail/CVE-2024-53908

National Vulnerability Database [2025c]. CVE-2025-26699 Detail: Allocation of Resources
Without Limits or Throttling in wrap()/wordwrap. https://nvd.nist.gov/vuln/
detail/CVE-2025-26699. Accessed: 2025-05-19.

OWASP [2022]. zaproxy/action-full-scan. https://github.com/zaproxy/action-full-
scan. Accessed: 2025-05-19.

— [2025]. OWASP Zed Attack Proxy (ZAP). Accessed: 2025-05-19. OWASP Foundation.
url: https://www.zaproxy.org/.

OWASP Cheat Sheet [2024a]. Authorization Cheat Sheet. Accessed: 2025-05-19. OWASP
Foundation. url: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_
Cheat_Sheet.html.

— [2024b]. Code Injection Cheat Sheet. Accessed: 2025-05-19. OWASP Foundation. url:
https://cheatsheetseries.owasp.org/cheatsheets/Code_Injection_Cheat_
Sheet.html.

OWASP CSP [2025]. Content Security Policy Cheat Sheet. Accessed: 2025-05-19. OWASP
Foundation. url: https://cheatsheetseries.owasp.org/cheatsheets/Content_
Security_Policy_Cheat_Sheet.html.

PIP Team [2025]. Repeatable Installs. https://pip.pypa.io/en/stable/topics/
repeatable-installs/. Accessed: 2025-05-19.

Render, Inc. [2025]. Deploy Hooks. https://render.com/docs/deploy-hooks. Accessed:
2025-05-19.

Retire.js Community [2020]. Retire.js: JavaScript library vulnerability scanner. Accessed:
2025-05-19. url: https://retirejs.github.io/retire.js/.

Snyk Ltd. [2025]. Snyk Code and Open Source Analysis. Accessed: 2025-05-19. url:
https://snyk.io/product/code/.

Willison, Simon [2025]. WhiteNoise Documentation. Accessed: 2025-05-19. url: http:
//whitenoise.evans.io/.

32

https://nvd.nist.gov/vuln/detail/CVE-2025-26699
https://nvd.nist.gov/vuln/detail/CVE-2025-26699
https://github.com/zaproxy/action-full-scan
https://github.com/zaproxy/action-full-scan
https://www.zaproxy.org/
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Code_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Code_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://pip.pypa.io/en/stable/topics/repeatable-installs/
https://pip.pypa.io/en/stable/topics/repeatable-installs/
https://render.com/docs/deploy-hooks
https://retirejs.github.io/retire.js/
https://snyk.io/product/code/
http://whitenoise.evans.io/
http://whitenoise.evans.io/

	Introduction
	Part A — Vulnerability Assessment
	OWASP ZAP Findings
	Missing Content-Security-Policy Header
	Out-of-date Bootstrap 4.3.1 Library

	Snyk Dependency Findings
	Out-of-date Django 4.2.16 Version

	Theoretical Vulnerabilities
	Insufficient Object-Level Authorisation Checks
	Insecure Custom Script Execution (Code Injection Risk)

	CI/CD Pipeline Implementation
	Implementing CI/CD Pipelines
	Pipeline Overview
	Summary
	CI/CD Pipeline Security Testing Reflection
	Post-deployment Vulnerability Remediation
	Forms Blocked by CSP Sandbox
	SRI Mismatch on Bootstrap
	Strict CORS on Static Assets

	Lessons Learned
	Early Integration of Security (Shift-Left)
	Defence in Depth through Declarative Policies
	Continuous Monitoring and Feedback Loops
	Least Privilege and Immutable Infrastructure

	Future Work
	Conclusion

