SECURECART E-COMMERCE PLATFORM
DEVELOPMENT

Stanley Shaw

October 2024



Contents

1 Introduction

2 Requirements Phase
2.1 Functional Requirements . . . . . . . . . . .. . L e
2.2 Non-Functional Requirements . . . . . . . . . . . .. . ... ...

3 System Analysis and High-Level Design

3.1 Introduction . . . . . . . .. e e e
3.2 Review and Consolidate Requirements . . . . . . .. ... ... ... .. ........
3.3 High-Level Architectural Style . . . . . . . . ... ... ... ... ... ... .....
3.4 Key Components and Interactions . . . . . . . . ... .. Lo
3.5 UIDesign . . . . oo o e e e e e
3.5.1 Navigational Flow . . . . ... ... ... .
3.5.2 Homepage Mock-up . . . . . . . . .. ..
3,53 UlDesignPrinciples . . . . .. ... ... ...
3.6 Database Design . . . . . . . .. e e e
3.6.1 Database Query Design. . . . . . . . . .. ... .. e
3.7 Security Considerations . . . . . . . . . . ... e e
3.8 Performance and Scalability . . . . ... ... ... ... ... ... ...

4 Detailed Design and Development Phase

4.1 System Components . . . . . . ... i e e e e e e e e e e
42 DataFlow Diagrams . . . . . . . . . . . . . . e e
43 DataModels . . . . . . . .
4.4 Sequence Diagrams . . . . . . . ... e e e e
45 Classdiagram . . . . . . . . . oL e e e e e e
4.6 Secure Design Principles . . . . . . . . . ... L

5 Implementation and Coding

5.1 Environment Setup . . . . . . . . ... e e e e e
5.2 ProjectInitialization. . . . . . . . .. L o
5.3 Authentication Implementation . . . . . . . . ... ...
5.4 Database Integration . . . . . . .. ...
5.5 Password Recovery . . . . . . . . . . .. e
5.6 Homepage Development . . . . . . . . . . .. .. e
5.7 Navigation Bar . . . . . . .. ...
5.8 Search Functionality . . . . . . .. . .. . . e
5.9 Shopping Cart and Checkout . . . . . . . . . . . ... .. ...
5.10 Profile Page . . . . . . . . . .. e e
5.11 Admin Functionality . . . . . .. ... .. ..
5.12 Two-Factor Authentication (2FA) . . . . . . . . . . . . . . . . o
5.13 Secure Payment System . . . . . . . ..o
5.14 Security Enhancements . . . . . . . . . . . ... ...
5.15 Ul Enhancements . . . . . . . . . . . . . . . e

6 Conclusion

7 Appendix

il

12
12
12
15
16
22
23

24
24
24
25
28
29
31
33
34
36
40
42
44
50
55
57

59

60



1. Introduction

E-commerce platforms are indispensable to the global economy, yet their handling of sensitive
user data makes them prime targets for cyberattacks [1]. To address these challenges, Secure-
Cart follows the V-Model software development lifecycle with a focus on stringent require-
ments, system design, and subsequent secure coding [2]. Developed using Django, Bootstrap,
PostgreSQL, and Stripe, the platform incorporates robust security measures such as secure au-
thentication, encrypted data transmission, and strict data handling [3, 4, 5, 6]. This report
focuses not only on the foundational stages of the system but also highlights its implementation
through secure code snippets, ensuring that potential vulnerabilities are identified and mitigated
both before and during development.



2. Requirements Phase

2.1 Functional Requirements
During the requirements-gathering phase, I identified the essential functionalities needed by

two primary user groups: the customers and the administrators. Validating these requirements
ensures that no critical security or functional requirements are overlooked [7].

Customer Requirements

Functional Area Requirements

Account Management ] ) ]
* Secure registration and login processes [8].

* Password recovery mechanisms [9].

* Optional multi-factor authentication (2FA) [10].

Product Browsing ) o o o
* Display of product listings with images and descriptions.

* Visibility of inventory levels.

» Search and filtering capabilities to locate products effi-
ciently.

Shopping Cart and .
Checkout * Ability to add products to the cart.

* Adjusting product quantities within the cart.
* Integration of secure payment methods.

* Order confirmation upon successful checkout.

Order History and

Profile Management * Viewing past orders and their statuses.

» Seamless logout functionality.

* Manage personal information.

Table 2.1: Customer Functional Requirements



SecureCart Development Report 3

Administrator Requirements

Functional Area Requirements

Product Management )
* Adding new products to the catalogue.

* Updating existing product information and prices.
* Removing discontinued or out-of-stock products.

* Managing inventory levels to prevent stockouts or over-
stocking.

Order Management o ) )
* Viewing all customer orders and their details.

» Marking orders as completed or shipped.

* Managing refunds and processing returns efficiently.

User Management o )
* Viewing and managing user accounts.

* Adjusting user roles and permissions.

* Enforcing account-related security measures, such as
password resets or account lockouts.

Reporting
* Generating sales summaries to track revenue.

* Accessing inventory data to monitor stock levels.

* Analyzing user activity to inform business decisions.

Table 2.2: Administrator Functional Requirements

Verification of these requirements involves ensuring that they are clear, feasible, and security-
centric. I will review each of them in the context of cybersecurity best practices and compliance
regulations, ensuring that the functionality is both realistic and necessary.



SecureCart Development Report 4

2.2 Non-Functional Requirements

Non-functional requirements define the overall standards the system must uphold, independent
of specific functionalities. These requirements ensure that the SecureCart platform is secure,
efficient, reliable, and compliant with relevant regulations.

Category Requirements

Securit
y  Secure password hashing and salted storage

e Mandatory HTTPS for all network communications
* Option for two-factor authentication (2FA)

* Input validation, parameterised queries, and output encoding to
prevent common attacks

Performance . ) .
and Scalability | ° Handling peak traffic and large user loads without excessive la-
tency [12]
» Techniques like caching and load balancing to ensure respon-
siveness
Availability and . . )
Reliability * High uptime, redundancy, and disaster recovery procedures

* Reliable backup strategies and failover mechanisms

Compliance and

Privacy * Conformance to data protection and privacy regulations (e.g.,

GDPR) [11]

* Proper storage and encryption of personally identifiable infor-
mation (PII)

Table 2.3: Non-Functional Requirements for the SecureCart Platform



3. System Analysis and High-Level Design

3.1 Introduction

This section details how the SecureCart platform’s requirements shape the overall structure and
high-level design. The goal is to create an architecture that meets the needs of both customers
and administrators, emphasising security, scalability, and maintainability.

3.2 Review and Consolidate Requirements
I began by validating the gathered requirements, ensuring completeness and consistency:

* Functional Needs:
— For Customers: Registration, login, product browsing, cart/checkout, order history,
profile management.
— For Administrators: Product CRUD (Create, Read, Update, and Delete), order over-
sight, user role management, and reporting.
* Non-Functional Aspects:
— Security: Encryption (in-transit and at-rest), secure authentication, authorisation,
and privacy compliance.
— Performance: Ability to handle peak traffic with minimal latency.
— Scalability: Support for horizontal or vertical scaling as user load increases.

— Compliance: GDPR or local data protection regulations.

These validated requirements form the basis for the system’s high-level architecture.



SecureCart Development Report 6

3.3 High-Level Architectural Style

SecureCart adopts a three-tier architecture [13]:

* Ul Layer: Implements the user interface (UI) for customers and administrators, ensuring
a responsive and user-friendly design (e.g., Django templates, Bootstrap).

* Business Logic Layer: Manages core business logic, data processing, authentication,
and security enforcement (e.g., Django services and middleware).

* Data Layer: Stores persistent data on the cloud (PostgreSQL) with strict access policies
and encryption at rest.

This layered approach ensures clear separation of concerns, easier maintenance, and the
ability to apply role-based security at distinct points in the data flow.

Ul layer
; ! ‘
ul Browser
Page
Registration 2FA Admin Login/out Purchase loading
requests. Interactions Actions requests requests requests
L
Business logic layer
Permission Data

Figure 3.1: High level Component diagram



SecureCart Development Report 7

3.4 Key Components and Interactions

While the architecture is layered, there are critical components that handle specific functionali-
ties. Below is a table highlighting the most important ones:

Component Responsibilities and Notes

Authentication * Enforces secure login (hashed passwords, optional 2FA).

* Role-based access control differentiating admins vs. cus-
tomers.

Product Management | ¢ Allows admins to add or update product info and prices.

* Inventory checks and validations to avoid negative stock.

Cart & Order Pro- | « Manages cart sessions, checkout flows, and payment integra-
cessing tion.

» Updates order records and triggers inventory adjustments.

Reporting & Analyt- | « Generates sales reports, user activity analytics.

ics
* Summarizes product performance to inform business deci-

sions.

Security Middleware | ¢« Handles HTTPS redirection, session management, and intru-
sion detection.

» Parameterised queries and input validation to prevent SQL
injection, XSS.

Table 3.1: High-Level Components and Their Roles

Inter-Layer Communication:

* Frontend to Backend: Requests pass via encrypted protocols (HTTPS), with CSRF
tokens and session IDs.

* Backend to Database: Django’s ORM or parameterised SQL queries uphold data in-
tegrity.

* Admin Functions: Advanced privileges allow direct product/user management, pro-
tected by role-based authentication checks.



SecureCart Development Report 8

3.5 UI Design

The user interface (UI) of the SecureCart platform is designed to provide a seamless and in-
tuitive experience for both customers and administrators. In order to guide the early design
process I created a navigational flow diagram and a homepage mock-up.

3.5.1 Navigational Flow

As shown in Figure 3.2, users can quickly progress from the login screen to browsing products,
managing their cart, checking out, and viewing their profiles. Administrators can additionally
navigate to the admin page where they can view and update both users and orders.

Login/Registration
page

4{ Home }7 Forgot Password

A 4 A4 A 4 ¥ ¥
™ I ~ e -

‘ View Basket ‘ View Proifile Search Bar

LS - LS A . -

Checkout Change Setlings View Orders/Users

Figure 3.2: High-level navigational flow diagram.



SecureCart Development Report 9

3.5.2 Homepage Mock-up

Figure 3.3 shows a simple mock-up of the homepage. Key elements include a site-wide navi-
gation bar with quick links to the home, cart, and profile pages, as well as a search feature and
product listings.

Figure 3.3: Mock-up of the SecureCart homepage.

3.5.3 UI Design Principles

* Consistency: An appealing colour scheme, typography, and layout.
* Clarity: Key actions (e.g., “Profile” or “Basket”) are clearly visible.
* Responsiveness: The layout adapts smoothly to various screen sizes.

* Accessibility: Semantic HTML, suitable labels, and high colour contrast ensure inclusiv-
ity.



SecureCart Development Report 10

3.6 Database Design

A robust and secure database is fundamental to the SecureCart platform, ensuring reliable stor-
age of user data, product information, and transaction records. PostgreSQL is chosen as the
primary data store due to its strong security features and scalability. Furthermore, the database
will be hosted on AWS to allow for increased flexibility and scalability.

3.6.1 Database Query Design

In order to break down the database design into a simpler format, I created a flow diagram
highlighting both users and admins’ queries.

SaL | !
— User Queries Query's | Admin Queries }(—

CQuery sanitisation

Rejected
Credential Checking |— CUery's
-~ Returned/
Returned Updated
Data v B ¥ Data
Query's Sent Over i
Encryption (TSL/SSL) Logged for security

v

PostgreSCL
Database

—

Figure 3.4: Database



SecureCart Development Report 11

3.7

Security Considerations

Security is integrated into each layer:

3.8

Encryption: All data in transit via TLS/HTTPS; sensitive data at rest (e.g., passwords)
hashed and salted using strong algorithms (PBKDF2) [14].

Authentication: Django’s auth system plus optional two-factor authentication for height-
ened security.

Authorisation: Strict RBAC, ensuring customers cannot access admin endpoints or data.

Input Validation: parameterised queries, server-side checks on all user inputs (product
searches, checkout data, etc.) [15].

Monitoring & Logging: Audit logs for key actions (logins, product changes, purchases)
to detect anomalies.

Performance and Scalability

To accommodate growth and periodic traffic spikes, the design includes:

Efficient Database Queries: optimising data retrieval with indexing and query optimi-
sation.

Caching: Reducing repeated computations or database queries by storing frequently ac-
cessed data temporarily.

Session Management: Handling user sessions efficiently to maintain state across re-
quests.

Static File Management: Serving and optimising static files like CSS, JavaScript, and
images for faster delivery.

Template Rendering: Dynamically generating HTML content based on user data or
application state.



4. Detailed Design and Development Phase

This section provides specific details on the implementation of each system component, em-
phasising secure design principles. Data flow diagrams, entity relationship diagrams, class

diagrams and sequence diagrams are included to ensure clarity.

4.1 System Components

Layer

Description

Security Features

Ul

User interface using Django
templates and Bootstrap.

Content  Security  Policy
(CSP), input validation.

Business Logic

Business logic,
tion, and data processing.

authentica-

RBAC, CSREF protection, in-
put validation.

Data

greSQL.

Persistent storage using Post-

Encrypted fields, strict access
controls.

4.2 Data Flow Diagrams

Level 1 Data Flow Diagram: High-level interaction between layers.

Confirmation

— Admin

5
]
&

Submit
Data

Manage
Data

User —

Application Logic

h

Data Processing
(Formats and sends
data to the database)

b

Authentication
(Validates credentials)

Response
v

Business Logic
(Processes user
requests)

Retrieve
Data
v

—

——___

PosigreSQL
Database

—

Figure 4.1: High-Level Data Flow Diagram.

12




SecureCart Development Report

13

Level 2 Data Flow Diagram: Low-level interaction between Users and the database.

User <

|

| .

l

p

View Order History

~

A

|

e ~ -
Register Account Login Purchase Item
L. l - l A \ l )
Validate Input Verify Credentials Retrieve Available

Items

|

Hash password

|

Store User Data

Retrieve Ordered
Items

—

Generate token
session

| |

Update Order History

Purchase

Retrieve User Data

PosigreSQL
Database

Figure 4.2: Low-Level User Data Flow Diagram.

Server
response



SecureCart Development Report

14

Level 2 Data Flow Diagram: Low-level interaction between Admins and the database.

Admin

-

o

|

l

~

Product Management

. ¥

-

b

Order Management

~,

¥

|

|

Add/Update Product

Retrieve Orders

|

Validate Product Data

|

Store Product Data

|

Update order status

l

l

User Management

Analytics

|

|

Retrieve User
Accounts

Generate Sales
Reports

|

Update User Roles

Postigre
Database

SQL

9

Figure 4.3: Low-Level Admin Data Flow Diagram.

Server
response



SecureCart Development Report

4.3 Data Models

Database Schema:

Table 4.1: Data Models Overview

Model Fields Security Features

User username, password, email, | Hashed-passwords (PBKDF2). En-
is_admin, is_2FA cryption at rest.

Product name, description, price, in- | Validation on updates.
ventory

Order user, status, total_cost Role-based access.

Cart amount, name, total_cost, in- | Validation Checks
ventory

Entity Relationship Diagram:

TwoFactorAuth

id user A4 id
content_type enabled BooleanField }—= customer ForeignKey
e ForeignKey - secret CharField complete BooleanField
action_flag PositiveSmalllntegerField date_ordered DateTimeField
action_time ateTime _
i id AutoField ——

change_message TextField

date_joined DateTimeField
object_id extField

email EmailField
object_repr \

first_name CharField

ast_name Charfield _

X . N id BigAutoField
m e e

- ——= user
id BigAutoField is_staff BooleanField

~ created_at DateTin
order Foreignke — is_superuser BooleanField
product ForeignKey = ast_login DateTimeField

price DecimalField password

username CharField

quantity Positivelntege

+— id BigAutoField —
description TextField

image - .
& < product ForeignKey
nventory . o _
quantity PositivelntegerField
price DecimalField

Figure 4.4: Entity Relationship Diagram.



SecureCart Development Report 16

4.4 Sequence Diagrams
In order to break down each part of my system into more digestible sections, I created a number

of sequence diagrams that will help guide me through the process of implementing the required
functionality [16].

Y - ]
User ul Backend Database

Send credentials

Validate user

>
| Validation result |

Login success/error |

Ui? | Ul Backend Database

Figure 4.5: User login sequence diagram

A ]
User Ul Backend Database

1 Submit registration details

y

Send details

Check duplicates

Y

Duplicate status

-
-

Create user entry (if no duplicates)

Confirmation
-

-

Registration success/error

-
-

Display confirmation

T N

c
v
1]
L

|E| Backend | Database ‘

@

>

Figure 4.6: User registration sequence diagram



SecureCart Development Report

17

N

e u|
| Enter email ‘:
Send email to verify -
Check email -
< Email exists/does not exist

Send password reset link

-
-

k.

User

& Y

User

Click reset link _ |

Request homepage

F

Enter new password

Update password

> Confirmation

-
|

__ Password reset success |

-
] ]

w

Figure 4.7: Forgot password sequence diagram

@ Backend Database

o
Request product list

Fetch product data

>,

< Return product data

< Display products

Show products

User

>

@ Backend Database

Figure 4.8: Product browsing sequence diagram



SecureCart Development Report

18

A
User ul Backend Database

Send query

>

Search products

__ Display results

Show matching products

A

< Return matching results

>

5 m ase

Figure 4.9: Searching products sequence diagram

AN ul
User

' Select product and quantity ‘:

Send cart update request

Backend Database

_ Update cart display

—
F

Add/update cart entry

Confirmation

Show updated cart

% [u]

T
| |
1 1
I I
| |
1 1
1 I
| |
1 1
] 1
| |
1 1
1 1
| |
1 1
1 1
| |
1 1
1 1

Database

Figure 4.10: Adding items to cart sequence diagram



SecureCart Development Report

19

A
User

COpen cart page

0

>

Reguest cart contents

Fetch cart data

Database

Return cart data

Display cart contents

-

Show cart items

User

A,

# b

User
|

i Initiate checkout‘.

u

e

Figure 4.11: Viewing the shopping cart sequence diagram

| Database | | Stripe |

Backend

]

Request checkout

e
o

Validate cart

User

< Payment success

| > |
! < Validation success ! |
| | Create payment sessign -
| | | A
| .. Session URL | |
| | [ |
. Redirect to payment | | |
I-‘ ] ] ]
Complete payment | : }:

' Update order status
Fail

I
_ Show confirmation
el |
1 I

| Backend

| Database | | Stripe |

Figure 4.12: Checkout sequence diagram



SecureCart Development Report

A
User I Database

i

Open profile

Request order history

2
Fetch order data

; >

Return order data

< Display order history

Show past orders

User | ul Database

Figure 4.13: Viewing order history sequence diagram

PN
Admin @ l Backend ‘ [ Databasel

Send action request

.
F

Execute action

Confirmation

_ Display success/error message

<

Admin @ l Backend ‘ [ Database |

Figure 4.14: Admin managing product sequence diagram



SecureCart Development Report

A -
User @ [ Database l | AuthenticatorApp

| Enable 2FA |
%

Generate QR code

2FA setup complete !

-

i i E Store 2FA secret }E E
: :{ Show QR code : ! !
i Scan QR cod:—:-i E E }E
i Enter code i E E E
E E Verify code }E E E
i i E Update 2FA status _‘__E E
i E E{ Confirmation : E

User

@'J

[ Database l | AuthenticatorApp

Figure 4.15: Enabling 2FA sequence diagram



SecureCart Development Report 22

4.5 Class diagram

After creating all the sequence diagrams mapping out the core functionality of my program I
then moved onto creating a class diagram that highlights the available functions for each class
as well as their respective interactions with other classes [17].

@ User

o id: int

o username: string
o email: string

o password: string
o is_admin: bool

e enable_2FA(): void
e disable 2FA(): void

1 1
Many Many
© can © order
o id: int

o id: int

L, user _id: int
o user_id: int © -

o status: string

@ addProduct{product_id: int, quantity: int}): void o total_cost: float
o removeProduct({product_id: int): void
o calculateTotal(): float

o placeOrder(): void
o cancelOrder(): void

1 1 1
Many| Many 1

@ Cartltem © Orderltem © Payment

A L id: int
o id: int o id: int ol L
o cart_id: int o order_id: int ° gms{j—r:g‘ fllr::-tat
o product_id: int o product id: int 2 status: étrin
o quantity: int o quantity: int : 9
o total _price: float o price: float o processPayment(): void

o refundPayment(): void

1 1
1
@ Product
o id: int

o name: string

o description: string
o price: float

o inventory: int

@ updateStock({gquantity: int): void

Figure 4.16: A class diagram highlighting all functions



SecureCart Development Report 23

4.6 Secure Design Principles

SecureCart leverages Django and PostgreSQL on AWS to implement robust security measures,
ensuring the protection of user data and authentication processes. These technologies, all adhere

to the secure design principles that lay out the framework for creating a secure application
[18, 19].

Principle Implementation Using Django and Post-
greSQL on AWS
Password Hashing Django hashes passwords using the PBKDF2

algorithm, ensuring secure, irreversible storage.
Options like Argon2 or berypt can provide even
stronger security [20].

Encryption at Rest PostgreSQL on AWS encrypts all stored data
using AES-256, protecting sensitive user and
transactional data from unauthorized access
[21].

Secure Communication All communications between the client, server,
and database are encrypted with HTTPS and
TLS/SSL, ensuring data in transit is secure and
protected from interception [22].

Input Validation Django’s ORM and form validation sanitize and
validate user inputs to prevent common vulner-
abilities, such as SQL injection and XSS [23].

Logging and Monitoring Django provides detailed logging to track key
events like login attempts, while AWS Cloud-
Watch monitors database activity and detects
anomalies [24, 25].

Table 4.2: Secure Design Principles and Their Implementation Within SecureCart

Django hashes passwords with PBKDF2, ensuring they are stored securely in the database.
PostgreSQL on AWS encrypts data at rest with AES-256, while AWS Key Management Ser-
vice (KMS) securely handles encryption keys [26]. HTTPS and TLS/SSL ensure secure data
transmission, protecting against man-in-the-middle attacks. Django’s ORM and form valida-
tion prevent common attacks like SQL injection and XSS. Finally, Django’s logging and AWS
CloudWatch enable monitoring and anomaly detection, ensuring prompt responses to potential
threats. These measures collectively enhance platform security and data integrity.



5. Implementation and Coding

The implementation phase involved setting up the development environment, constructing core
functionalities, and integrating essential security measures to ensure the robustness and relia-
bility of the SecureCart platform. This chapter details each step of the development process,
highlighting key decisions and configurations.

5.1 Environment Setup

To begin, a Python virtual environment was established to manage project dependencies effec-
tively. This isolated environment ensures that project-specific packages do not interfere with
system-wide installations.

VENV Venv

=

Figure 5.1: Creating a virtual environment

Within this environment, Django and psycopg2 were installed. Django serves as the primary
web framework, while psycopg? facilitates seamless interaction with PostgreSQL databases.

Figure 5.3: Installing psycopg?2 for PostgreSQL

5.2 Project Initialization

With the environment prepared, the SecureCart project was initiated using Django’s built-in
commands. This initial setup created the foundational structure necessary for further develop-
ment.

tanl\Downloads\newproject>django-admin startproject

Figure 5.4: Creating the SecureCart project

Subsequently, the default Django app, named “’store”, was created to house the e-commerce
functionalities.

sTore

Figure 5.5: Creating the store app

24



SecureCart Development Report 25

5.3 Authentication Implementation

Developing secure authentication mechanisms was a priority. Login and registration pages were
crafted to allow users to create accounts and access their profiles securely. The corresponding
Python files(settings.py, urls.py, and views.py) were updated to handle these au-
thentication processes effectively.

tends "base.html™ %}

yck content %}

" placeholder="Enter e” required

ol" placeholder="E

4" >Login

{% endblock %}

lock title X}Register - SecureCart{% endblock %}

-center mb-4">Register

{% endblock %}

Figure 5.7: Register.html Template



SecureCart Development Report 26

The settings.py file was configured to redirect users appropriately upon accessing the
webpage.

LOGIN_REDIRECT URL = */
LOGOUT REDIRECT URL = "login’

LOGIN URL = 'login’

Figure 5.8: Updated settings.py for redirections

Similarly, urls.py was modified to define the URL patterns for the login and registration
pages.

include
t redirect

admin.site.urls
» include( 'dj
request: redirect
/', include( st

Figure 5.9: Updated urls.py for page redirections

Inviews.py, views were established to render the registration page and handle user input.

django.shortcuts import render, redirec
django.contrib.auth.forms i t UserCreationForm
django.contrib.auth import login

django.contrib import messages

ister({request):
if request.method == 'POST":
form = UserCreationForm{request.POST)

if form.is walid{():
user = form.save()
login{request, user)

messages. suc
return redir
2]se:
form = UserCreationForm()
urn render(request, ‘stor

Figure 5.10: Updated views.py for register view



SecureCart Development Report 27

Following these updates, the login and registration pages were operational, as illustrated
below:

SecureCart

Login

USE‘IﬂﬂﬂlE|EI'I'.EI’ usermame |

Password| Enter password |
Login

Don't have an account?

Register
Forgot Password?
© 2024 SecureCart. All rights reserved.

Figure 5.11: Login page

SecureCart

=

Register

Username: || | Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.

Password: | |

s Your password can’t be too similar to vour other personal information.
* Your password must contain at least 8 characters.

* Your password can’t be a commonly used password.

* Your password can’t be entirely numeric.

Password confirmation: | | Enter the same password as before, for verification.

Don't have an account?

Register
Forgot Password?
© 2024 SecureCart. All rights reserved.

Figure 5.12: Registration page



SecureCart Development Report 28

5.4 Database Integration

To ensure that user authentication was securely linked to the backend, the login functionality
was connected to a PostgreSQL database hosted on AWS. This integration was achieved by
updating the settings.py file with the appropriate database configurations.

: config( 'DB

contig( 'DB
RD": config('
: config( DB _|

config( 'DBE_P

require’,
: os.path.join{BASE_DIR, 'global-bu

Figure 5.13: Connecting to PostgreSQL with encryption

Sensitive credentials, such as database usernames and passwords, were stored as environ-
ment variables to enhance security and prevent exposure in the codebase.

Figure 5.14: Storing sensitive data in environment variables



SecureCart Development Report 29

5.5 Password Recovery

Implementing a password recovery feature was essential for user convenience and security.
Django’s built-in functionality was utilised, requiring configuration of SMTP settings to enable
email transmissions.

EMATL BACKEND =

EMATL HOST smtp.gmail

EMATL_PORT = 587
EMAIL USE TLS =

EMATL_HOST USER = config('EMAIL")
EMAIL_HOST PASSWORD = config{'EMAIL
DEFAULT_FROM_EMATIL = EMAIL_HOST_USER

Figure 5.16: SMTP configuration in settings.py

This setup allowed users to reset their passwords seamlessly, as demonstrated below:
Django administration @

assword reset
Forgotten your password? Enter your email address below. and we'll email instructions for setting a new one.

Email address

Figure 5.17: Forgot password page



SecureCart Development Report 30

9 securecart.pw@gmail.com

To: stanleyshaw363@icloud.com

Password reset on 127.0.0.1:8000

You're receiving this email because you requested a password resst for your user account at 127.0.0.1:8000.
Please go to the following page and choose a new password:

https://127.0.0.1:8000/accounts/reset/Mg/cjj4d0-3447197329f513efgbf4fe Sbbefdcide/

Your username, in case you've forgotten: admin
Thanks for using our sitel
The 127.0.0.1:8000 team

Figure 5.18: Password reset email



SecureCart Development Report 31

5.6 Homepage Development

The homepage serves as the central hub for users to browse products. A dedicated template was
first created, and product models were developed to store relevant information such as name,
description, price, and inventory levels.

{% extends ‘base.html’ %}

block title %}SecureCart - Home{% endblock %}

{% block content %}

if user.is_authenticated %}

products %}
{% for product in p
clas

ame }}

ription|truncatewords:

">View Details

endblock %}

Figure 5.19: Home.html template

ict(models 1) :
name = models.CharField(max length=255)
description = models.TextField()
price = models.DecimalField(max digits=18, decimal places=2)
inventory = models.IntegerField()

image = models.ImageField(upload to="pr /", null=

__s5tr_ (self):
return . name

Figure 5.20: Product model



SecureCart Development Report

32

To ensure the homepage loaded correctly post-login, urls
dated accordingly.

m django.contrib import admin

django.u rt path, include

store

euws

django.conf i rt settings
django.conf.urls.static im

urlpatterns
pathi

path
path
path

pathi

/', admi ite.urls),
include 1s*

ewWs . home, name

]

» Views.custom login, name="login'),

@login_required({login_url="/
home(request):

The updated homepage, featuring example products, is shown below:

Figure 5.22: Updated views.py for homepage

’\Velcome admin to SecureCart

Desk

Wooden desk.
Price: $50.00

Available: 10000

Quantity |1
| Add to Cart |
© 2024 SecureCart. All rights reserved.

Figure 5.23: Homepage with product example

.py and views.py were up-



SecureCart Development Report 33

5.7 Navigation Bar

A navigation bar was developed to facilitate easy movement between key sections of the web-
site, including the cart, profile, admin dashboard, and logout functionalities.

class

aria-contro

Profile

Admin

Logout

method=

{% endif %}

Figure 5.24: Navigation bar HTML

Additionally the Logout functionality was implemented using Django’s built-in features,
ensuring users could securely exit their accounts.

out/", wviews.custom logout, name=

Figure 5.25: Updated urls.py for logout



SecureCart Development Report

34

5.8 Search Functionality

To enhance user experience, a search bar was implemented, allowing users to filter products
based on specific criteria.

"row mt-4"
product in

product_search(request
query = request.GET.g

e
products = Product.obj
return render(request, 'store/product search.html', {'products’': products, ‘query’': query})

{ duct.name }}
"»{{ product.description|truncatewords:15 }}
Price:
’ "»View Details

Figure 5.26: Product_search.html template

):
t('q")
ects.filter(name__icontains=query)

Figure 5.27: Product search view in views.py



SecureCart Development Report 35

The functioning search capability is depicted below:

Home Cart Profile Admin Logout Search

Search Results for "desk"

Desk

Wooden desk.

Price: $50.00

Figure 5.28: Working search functionality



SecureCart Development Report 36

5.9 Shopping Cart and Checkout

The shopping cart is a pivotal feature, enabling users to select and manage products before
finalising purchases. The cart template and associated models were developed to handle these
functionalities.

1 tore_
block content

srf_token

Your Shopping Cart
if cart.items.all 2

class=

Product
Quantity
Price
Total

{% for item in cart.items.all %}

——

item.product.name }}

{{ item.quantity }}

item.product.price }}
item.product.price|mul:item.quantity }}

~

B B -
=
e

{% endfor %}

Grand Total: ${{ cart.get_total_price }}

Proceed to Checkout

I
Your cart is empty.
endif %}
endblock %}

Figure 5.29: Cart_detail.html template

Figure 5.30: Cart URL configuration

@login required
cart _detail{request):
cart, created = Cart.objects.get_or_create(user=request.user)

ip = get client ip(request)
logger.info(f"Cart d - User: r.username}, IP
return render(request, ‘s cart_detail.html’, {'cart’': cart})

Figure 5.31: Cart detail view in views.py



SecureCart Development Report 37

Cart and Cartltem models were established to track user selections effectively.

[ 5 al):
models. ForeignKey(User, on_delete=models.CASCADE)
models.DateTimeField(auto now add= }

otal price( :
sum({item.get total price() for i iy .items.all())

cart = models.ForeignKey{Cart, on_delete=models.CASCADE, related name='items")
product = models.ForeignKey({Product, on_delete=models.CASCADE)
quantity = models.PositiveIntegerField(default=1)

get_total price(self):
return .product.price * .quantity

Figure 5.32: Cart and Cartltem models

The functionality to add items to the cart was implemented as follows:

@login_required
add_to_cart(request, pk)
product et ject i 84 {Product
cart, create C
quantity = int(request.POST.get( g

error(request 0 {product.inventory} units product.name}

n redirect(’ » pk=pk)

cart_item, created = CartItem.objects.get_or_create(cart=cart, product=product)

lable stock for {product.name}.”)

cart_item.quantity = quantity

cart_item.sav

"{quantity} uni f {product.name} added t

Figure 5.33: Add to cart functionality



SecureCart Development Report 38

Subsequent development focused on the checkout process and order confirmation. Order
and Orderltem models were created to manage transactions, and corresponding templates were
developed to facilitate user confirmations.

order = models.ForeignKey({Order, on_delete=models.CASCADE, related name="items')
product = models.ForeignKey(Product, on_delete=models.CASCADE)

quantity = models.PositiveIntegerField()

price = models._DecimalField{max digits=18, decimal places=2)

get_total price(self):
return .price * .quantity

__str (self):
t " .quantity} x .product.name} in Order { -order.id}

er{models.Model):
customer = models.ForeignKey(User, on_delete=models.CASCADE)
date ordered = models.DateTimeField(auto now_add= )}
complete = models.BooleanField(default= )

__str_ (self):
return £"0Order { -id} by { .customer.username }"

get_total(self):
return sum{item.get total price() for item in

Figure 5.34: Order and Orderltem models

1 units of Desk added to cart.

Your Shopping Cart

Product Quantity Price Total
Desk 1 $50.00 $50.00

Grand Total: $50.00

Proceed to Checkout Continue Shopping

Figure 5.35: Shopping cart page



SecureCart Development Report 39

% extends 'base.html’ %}
csrf_token %}

4 block content %]
Checkout

method="post"

{% csrf_token %}
1L
I
"=“Confirm Order

% endblock %}

Figure 5.36: Checkout.html template

Checkout

Total Amount: $50.00

Confirm Order

Figure 5.37: Working checkout page

extends 'base.
csrt_token %}

block content %]
Order Confirmation

Thank you for your purchase, {{ user.username

Your order number is {{ order.pk }}.

LL
endblock %}

Figure 5.38: Order_confirmation.html template

Your order has been placed successfully.

Order Confirmation

Thank you for your purchase, admin!

Your order number is 1.

Figure 5.39: Successful order page



SecureCart Development Report 40

5.10 Profile Page

The profile page was developed to allow users to view and manage their personal information
and order history. This involved updating URL configurations and creating dedicated templates.

ews.profile, name

Figure 5.40: Updated urls.py for profile page

InfForm

Username: {{ user.username }}
Email: {{ user.email }}

Order ID
Date Placed
1

Details

{X for order in orders X}

{{ order.id }}
{{ order.date_ordered|date:"F j

{X if orde
Completed

*>Pending
{% endif X}

${{ order.get_total }}

href="{%

{X endfor X}

{¥ endblock ¥}

Figure 5.41: Profile.html template



SecureCart Development Report 41

A corresponding view was created to render the profile page correctly.

@login required
profile{request):

user = F‘EqUESt.LJSE'l"

Figure 5.42: Profile view in views.py

The functional profile page is displayed below:

Account Information

Username: admin

Email: stanleyshaw363@icloud.com

Order ID Date Placed Total Amount Details

1 January 13, 2025, 12:09 a.m. Pending $50.00 View

Figure 5.43: Working profile page



SecureCart Development Report 42

5.11 Admin Functionality

Enhancing Django’s built-in admin dashboard was crucial for managing products, orders, and
user roles effectively. Custom functionalities were added by updating admin.py.

cite.urls),

Figure 5.44: Updated urls.py for admin page

django.contrib import admin, messages
-models im
rom django.utils.translation import ngettext

list editable =
list filter = (°

erItemInline(admin.TabularInline):
model = OrderItem
readonly fields = ('prt t", 'quantity’', 'price
can_delete =
extra = @

0 rAdmin(admin.
list_display = ('id
inlines = [OrderItemInli

readonly fields

actions = [ 'mar

. .SUCCESS)
_description

Figure 5.45: Admin.py with custom functions



SecureCart Development Report 43

Jjango administration

Site administration

AUTHENTICATION AND AUTHORIZATION

Groups + add  # Change

Users + Add  # Change

STORE
Orders + add  # Change
Products + add  # Change

Figure 5.46: Working admin dashboard



SecureCart Development Report

44

5.12 Two-Factor Authentication (2FA)

To bolster security, Two-Factor Authentication (2FA) was integrated, allowing users to enable

or disable this feature via their profile.

Two-Factor Authentication (2FA)

t if two_fa.enabled %}
href= url

meth Tt~
% csrf_token %}

enabled ¥}
> currently

Enabled
E ":»Disable 2FA

‘»*Enable 2FA

Figure 5.47: 2FA option in profile page

Templates for 2FA setup and verification were created to facilitate user interactions.

<tends “"base.html

thod="post
srf_token %}

{% endfor %}

{% endif %}

endblock X}

nticator, Authy}).
luid”

ntrol” placeholder=" " required

1" >Verify 2FA

Figure 5.48: 2FA setup template



SecureCart Development Report

45

tends “base.html

block content

wo-Factor Authent

" style="ma idth

control” placeholder="Enter 2

3" >Verify

message }}
{% endfor %}

{% endif %}

(% endblock %}

Figure 5.49: 2FA verify template

A dedicated model was then developed to store 2FA secrets securely.

(User, on_delete=models.CASCADE)
1d(default= h]
arField(max_ length=32, blank= 5 null=

_str_ (self):
r n 7 .user.username} - 2 : led’ if .enabled

Figure 5.50: 2FA model

n" required




46

SecureCart Development Report

Views and URL configurations were updated to manage the 2FA setup and verification pro-

CESSES.

@login_required
or_setup(request}):

request.user
two_fa = get_object_or_484(TwoFactorAuth, user=user, enabled=

[two_fa.secret} : {len({two_fa.secret

request.method ==
token = request.PO
if verify

logg

totp_uri = get totp_ur
qr_code_base64 = genera

n render(re

user = User.objects.get(id=user_id)
two_fa = TwoFactorAuth.objects.get(user=user, enabled=
pt (User. a
messages.error(reques
n redirect( "l
if request.method == 'POST

token = request.POST.get(

if verify_ totp(toke

Figure 5.52: 2FA verify view



SecureCart Development Report

47

The default Django login was customised to incorporate 2FA, redirecting users to the 2FA
verification page post-login.

m django.

djar
m stor

n django.
django.

urlpatterns

contrib im t admin
path, include
rt v

conf in settings
conf.urls.static import static

*, admin.site.urls),
include

nfirmation, name="t

two_factor
o_factor_
ustom_logout, name=

Figure 5.54: 2FA redirection in urls.py



SecureCart Development Report

48

QR codes for 2FA were generated using the pyotp and grcode Python modules.

pyotp

ret():
return pyotp.random base32(length=32)

totp uri(user, secret):
return pyotp.totp.TOTP(secret).provisioning_uri(
name=user.email, issuer_name e t”

)

qr.add_data(uri)

qr-make(fit= )

img = gr.make image(fill= <", back_color="white")
buf = io.BytesIO()

img. e(buf, format="P

image stream = buf.getvalue()

return base64.b64encode(image stream).decode( utf-

verify totp(token, secret):
= pyotp.TOTP(secret)
n totp.verify(token)

Figure 5.55: QR code generation for 2FA




SecureCart Development Report 49

The 2FA functionality was thoroughly tested, ensuring users could enable or disable it as
required.

Set Up Two-Factor Authentication

Scan the QR code below with your authenticator app (e.g.,

Google Authenticator, Authy).

Enter the token generated by your app

123456

Verify 2FA

Figure 5.56: 2FA QR code in action

Account Information

Username: admin

Email: stanleyshaw363@icloud.com

Two-Factor Authentication (2FA)

2FA is currently (EESEEE.

Enable 2FA

Order ID Date Placed Status Total Amount Details

1 January 13, 2025, 12:09 a.m. Pending $50.00 View

Figure 5.57: Profile page with 2FA option



SecureCart Development Report 50

5.13 Secure Payment System

Integrating a secure payment system was crucial for the platform’s e-commerce functionality.
Stripe was selected for its robust API and PCI compliance, allowing for secure and efficient
payment processing.

Initially, the Stripe library was imported, and the API keys were configured via environment
variables to maintain security.

=pk_test 51Qgw3AFBcsQZ5iopjoeDokQnn7e8TWdCm383paWZEVCEOL

=sk_test 51(Qgw3AF8csQZ5iopUOungNZyP588IWsADOTholSwIBYY1F771T

Figure 5.58: Stripe API key configuration

Figure 5.59: Retrieving Stripe API keys
Templates for handling successful and cancelled purchases were created to provide clear
feedback to users.

extends ‘base.html’' ¥}
% load static %}

{% block content %}

Canceled

Your payment was canceled. You have not been charged.

href="{% url 'cart_detail’ %}" class="btn bitn-secondary btn-lg":>Return to Cart

{% endblock %}

Figure 5.60: Cancelled order template



SecureCart Development Report 51

{% block content %}

class="contai

role="alert"

Your payment has been confirmed. Order #{{ order.id }} has been placed.

href= irl "home class="btn btn-primary btn-lg"”>Return Home

{% endblock %}

Figure 5.61: Successful order template

The views . py file was updated to redirect users to the Stripe purchase page during check-
out and to handle the responses for successful or cancelled payments.

payment cancel{request):

» cancels on

Figure 5.62: Payment cancel view



SecureCart Development Report 52

@login_required
payment_success{request):

session_id = request.GET.get('s
if session_id:

messages.error(request,

retrieve(session_id)
logge _
messages.error{request,
return redirect( r

sion.payment_status !=

messages.warning(r
irn redirect(

=request.u

order = Order.objects.cr

item in cart.ite
OrderItem.o

product=item.product,

quantity-item.quantity,
price=item.product.price

item.product.inventory -= item.quantity
item.product.

cart.delete()

logger.info(f"Order

order}’

Figure 5.63: Payment success view



SecureCart Development Report 53

@login required
checkout (request):
cart, = Cart.objects.get or create(user=request.user)
cart_total = cart.get_total_price()
if cart_total <= @:
messages.error(request,
return redirect( cart_

amount_in_cents = int{cart_total * 188)
YOUR_DOMAIN = request.build absolute uri('/

success url = YOUR DOMAIN + reverse('p
cancel _url = YOUR_DOMAIN + reverse

try:
checkout_se
payment_method types=['card'],

ssion = stripe.checkout.Session.create(

line_items=][

rt Purg

: amount in cents,

3

url, code=383)

eturn redirect(’cart_de

Figure 5.64: Updated checkout view



SecureCart Development Report 54

Comprehensive testing confirmed that Stripe integration functioned as intended, as evi-
denced by the following:

Or pay with card

Email REQUIRED
Card information

1234 1234 1234 1234 v [ HE ©

MM / YY cve °
Cardholder name

Full name on card
Country or region

United Kingdom v

Postal code

Securely save my information for 1-click checkout
ay faster on this site and everywhere Link is accepted.

i 07400 123456 Optiona

Figure 5.65: Working card payments

Transactions
All Succeeded Refunded Disputed Failed
2 2 1] 0 0

@ Dateand time = @ Amount @ Currency @ Status = @ Payment method @& More filters

Amount Payment method Description Customer Date 4
USS50.00 USD |Succeeded v/ | [QJ +++-4242  pi_30gwIFF8csQZ5iopl0SRabHT  stanleyshaw363@icloud.com 13 Jan, 2240 -

USS50.00 USD |Succeeded v | [QJ ----4242  pi_30gwFtF8csQZSioplXxTMySX stanleyshaw363@icloud.com 13 Jan, 2237 -

Figure 5.66: Stripe dashboard



SecureCart Development Report 55

5.14 Security Enhancements

Ensuring the security of the SecureCart platform was paramount. Several measures were im-
plemented to protect data integrity and user privacy.

Detailed logging was set up using Django’s built-in logging features to monitor and detect
potential threats.

Figure 5.67: Logging configuration in settings.py



SecureCart Development Report 56

0 User admin 1 ed in without :Fh
} Home by user IP: 127.0.9.]

“J Produ Mame: Desk, Viewed by: admin from IP: 127.8.8.:
b : Product Mame: Desk, User: admin, IP: 127.8.8.1, Quantity: 1
1dm1n IP: h..ﬁ.a.l

Figure 5.68: Detailed logging implementation

Encryption was enforced across all network traffic by mandating HTTPS, ensuring that data
in transit was secure. Additionally, all database transactions utilised TLS/SSL protocols.

"ENGIME': 'dj
"NAME " : config
: config( ‘DB
JRD" : config
: config( 'DB_|
contig

th.join(BASE_DIR, ‘global-bundle.pem’)

SECURE_HSTS SECONDS = 31
SECURE_HSTS_INCLUDE_SUBDOMAINS =
SECURE_HSTS_PRELOAD =
SECURE_SSL_REDIRECT =

Figure 5.70: Enforcing HTTPS connections

Furthermore, CSRF tokens and cookies were configured to be transmitted exclusively over
HTTPS, preventing interception and ensuring session security.

SESS5I0ON COOKIE SECURE =

C5RF_COOKIE SECURE =

Figure 5.71: Securing CSRF tokens and cookies over HTTPS



SecureCart Development Report 57

5.15 UI Enhancements

The aesthetic appeal of the website was enhanced using custom CSS and the Bootstrap frame-
work, resulting in a more engaging and user-friendly interface.

lpx Orgba(8

Figure 5.72: Updated styles.css for website aesthetics



SecureCart Development Report 58

These enhancements culminated in a visually appealing store page, featuring a cohesive
colour scheme and improved layout.

Welcome admin to SecureCart

Home Cart Profile Admin Logout Search

d

Desk Trainers High heels. perfume
Wooden Desk. Black Trainers. Blue and pink high heels. Chanel perfume.
Price: $24.99 Price: $100.00 Price: $130.00 Price: $145.00

View Details View Details View Details View Details

Figure 5.73: Store page with new CSS



6. Conclusion

This report has demonstrated how SecureCart was developed using the V-Model SDLC to en-
sure both robust functionality and security. It has covered gathering and verifying require-
ments, designing a three-tier architecture, and implementing essential features including secure
login, two-factor authentication, and a Stripe-integrated checkout. Security measures, such as
encrypted data storage, HTTPS enforcement, and environment variables for sensitive informa-
tion, were systematically employed. Through careful testing, detailed logging, and a focus on
user-friendly design (including a clean Bootstrap interface), the final result is an e-commerce
platform that offers reliability, scalability, and enhanced protection for all user data.

59



7. Appendix

Project files:
https://github.com/stanly363/Secure—-ecomerse-website

60


https://github.com/stanly363/Secure-ecomerse-website

Bibliography

[1] Darktrace.com. (2024). Darktrace. [online] Available at: https://darktrace.com/
cyber—ai-glossary/cybersecurity—-for-retail-ecommerce

[2] Nakkasem, T. (2020). V-Model. [online] Medium. Available at: https://medium.
com/software—-engineering—-kmitl/v-model-3a71622b3d82.

[3] Django (2024). Django documentation — Django documentation. [online] Django Project.
Available at: https://docs.djangoproject.com/en/5.1/.

[4] Otto, M. (2019). Introduction. [online] Getbootstrap.com. Available at: https:
//getbootstrap.com/docs/4.1/getting-started/introduction/.

[5] PostgreSQL.org. (n.d.). PostgreSQL: Documentation. [online] Available at:
https://www.postgresql.org/docs/.

[6] Stripe.com. (2024). Documentation. [online] Available at:
https://docs.stripe.com/?locale=en—GB.

[7] Fanmuy, G., Fraga, A., and Llorens, J. (2012). Requirements verification in the industry. In
*Complex Systems Design & Management: Proceedings of the Second International
Conference on Complex Systems Design & Management CSDM 2011* (pp. 145-160).
Springer Berlin Heidelberg.

[8] OWASP (2017). Authentication - OWASP Cheat Sheet Series. [online] Available at:
https://cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html.

[9] Kelseyk (2021). NIST Password Reset Guidelines. [online] Specops Software. Available
at: https:
//specopssoft.com/blog/nist-password-reset-guidelines/.

[10] NIST (2022). Multi-Factor Authentication. [online] NIST. Available at:
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/
multi-factor—-authentication.

[11] ICO (2023). Overview — Data Protection and the EU. [online] ICO. Available at:
https:
//ico.org.uk/for-organisations/data-protection-and-the-eu/
overview—-data-protection-and-the-eu/.

[12] wa.aws.amazon.com. (n.d.). Performance Efficiency - AWS Well-Architected
Framework. [online] Available at:
https://wa.aws.amazon.com/wellarchitected/
2020-07-02T19-33-23/wat.pillar.performance.en.html.

[13] AWS (2024). Three-Tier Architecture Overview - AWS Serverless Multi-Tier
Architectures with Amazon API Gateway and AWS Lambda. [online] Available at:
https://docs.aws.amazon.com/whitepapers/latest/
serverless-multi-tier—-architectures—-api-gateway—-lambda/
three-tier—-architecture-overview.html.

61


https://darktrace.com/cyber-ai-glossary/cybersecurity-for-retail-ecommerce
https://darktrace.com/cyber-ai-glossary/cybersecurity-for-retail-ecommerce
https://medium.com/software-engineering-kmitl/v-model-3a71622b3d82
https://medium.com/software-engineering-kmitl/v-model-3a71622b3d82
https://docs.djangoproject.com/en/5.1/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://www.postgresql.org/docs/
https://docs.stripe.com/?locale=en-GB
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://specopssoft.com/blog/nist-password-reset-guidelines/
https://specopssoft.com/blog/nist-password-reset-guidelines/
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/multi-factor-authentication
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/multi-factor-authentication
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.pillar.performance.en.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.pillar.performance.en.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html

SecureCart Development Report 62

[14] OWASP (2025). WSTG - v4.1 — OWASP Foundation. [online] Available at:
https://owasp.org/www—-project-web-security-testing-guide/
v4l/4-Web_Application_Security_Testing/04-Authentication_
Testing/07-Testing_for_Weak_Password_Policy.

[15] OWASP (2019). Input Validation OWASP Cheat Sheet Series. [online] Available at:

https://cheatsheetseries.owasp.org/cheatsheets/Input_
Validation_Cheat_Sheet.html.

[16] PlantUML.com. (n.d.). Open-source tool that uses simple textual descriptions to draw
beautiful UML diagrams. [online] Available at: https://plantuml.com/.

[17] Drawing UML with PlantUML PlantUML Language Reference Guide. (n.d.). Available
at: https://pdf.plantuml.net/1.2019.3/PlantUML_Language_
Reference_Guide_en.pdf [Accessed 20 Jan. 2025].

[18] OWASP. (n.d.). Secure Product Design - OWASP Cheat Sheet Series. [online] Available
at: https://cheatsheetseries.owasp.org/cheatsheets/Secure_
Product_Design_Cheat_Sheet.html.

[19] National Cyber Security Centre (2019). Secure design principles. [online] Available at:
https://www.ncsc.gov.uk/collection/
cyber—-security-design-principles.

[20] Django Project. (2024). Password management in Django — Django documentation.
[online] Available at: https:
//docs.djangoproject.com/en/5.1/topics/auth/passwords/.

[21] Amazon.com. (2025). Encrypt an existing Amazon RDS for PostgreSQL DB instance -
AWS Prescriptive Guidance. [online] Available at: https:
//docs.aws.amazon.com/prescriptive-guidance/latest/patterns/
encrypt—-an-existing-amazon-rds-for—-postgresqgl-db-instance.
html [Accessed 21 Jan. 2025].

[22] CLOUDFLARE (2024). What is Transport Layer Security? — TLS protocol —
Cloudflare UK. Cloudflare. [online] Available at: https://www.cloudflare.com/
en-gb/learning/ssl/transport—-layer—-security-tls/.

[23] Duisebekova, K., Khabirov, R. and Zholzhan, A., 2021. Django as Secure
Web-Framework in Practice.(1), pp.275-281.

[24] AWS (2024). What is Amazon CloudWatch? - Amazon CloudWatch. [online]
Amazon.com. Available at: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.

[25] Django Project. (2025). Logging — Django documentation. [online] Available at:
https://docs.djangoproject.com/en/5.1/topics/logging/
[Accessed21Jan.2025].

[26] AWS (2024). What Is AWS Key Management Service? - AWS Key Management
Service. [online] docs.aws.amazon.com. Available at: https://docs.aws.amazon.
com/kms/latest/developerguide/overview.html.


https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://plantuml.com/
https://pdf.plantuml.net/1.2019.3/PlantUML_Language_Reference_Guide_en.pdf
https://pdf.plantuml.net/1.2019.3/PlantUML_Language_Reference_Guide_en.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://docs.djangoproject.com/en/5.1/topics/auth/passwords/.
https://docs.djangoproject.com/en/5.1/topics/auth/passwords/.
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/.
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.
https://docs.djangoproject.com/en/5.1/topics/logging/ [Accessed 21 Jan. 2025].
https://docs.djangoproject.com/en/5.1/topics/logging/ [Accessed 21 Jan. 2025].
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html.
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html.

	Introduction
	Requirements Phase
	Functional Requirements
	Non-Functional Requirements

	System Analysis and High-Level Design
	Introduction
	Review and Consolidate Requirements
	High-Level Architectural Style
	Key Components and Interactions
	UI Design
	Navigational Flow
	Homepage Mock-up
	UI Design Principles

	Database Design
	Database Query Design

	Security Considerations
	Performance and Scalability

	Detailed Design and Development Phase
	System Components
	Data Flow Diagrams
	Data Models
	Sequence Diagrams
	Class diagram
	Secure Design Principles

	Implementation and Coding
	Environment Setup
	Project Initialization
	Authentication Implementation
	Database Integration
	Password Recovery
	Homepage Development
	Navigation Bar
	Search Functionality
	Shopping Cart and Checkout
	Profile Page
	Admin Functionality
	Two-Factor Authentication (2FA)
	Secure Payment System
	Security Enhancements
	UI Enhancements

	Conclusion
	Appendix

