
SECURECART E-COMMERCE PLATFORM

DEVELOPMENT

Stanley Shaw

October 2024

Contents

1 Introduction 1

2 Requirements Phase 2
2.1 Functional Requirements . 2
2.2 Non-Functional Requirements . 4

3 System Analysis and High-Level Design 5
3.1 Introduction . 5
3.2 Review and Consolidate Requirements . 5
3.3 High-Level Architectural Style . 6
3.4 Key Components and Interactions . 7
3.5 UI Design . 8

3.5.1 Navigational Flow . 8
3.5.2 Homepage Mock-up . 9
3.5.3 UI Design Principles . 9

3.6 Database Design . 10
3.6.1 Database Query Design . 10

3.7 Security Considerations . 11
3.8 Performance and Scalability . 11

4 Detailed Design and Development Phase 12
4.1 System Components . 12
4.2 Data Flow Diagrams . 12
4.3 Data Models . 15
4.4 Sequence Diagrams . 16
4.5 Class diagram . 22
4.6 Secure Design Principles . 23

5 Implementation and Coding 24
5.1 Environment Setup . 24
5.2 Project Initialization . 24
5.3 Authentication Implementation . 25
5.4 Database Integration . 28
5.5 Password Recovery . 29
5.6 Homepage Development . 31
5.7 Navigation Bar . 33
5.8 Search Functionality . 34
5.9 Shopping Cart and Checkout . 36
5.10 Profile Page . 40
5.11 Admin Functionality . 42
5.12 Two-Factor Authentication (2FA) . 44
5.13 Secure Payment System . 50
5.14 Security Enhancements . 55
5.15 UI Enhancements . 57

6 Conclusion 59

7 Appendix 60

ii

1. Introduction

E-commerce platforms are indispensable to the global economy, yet their handling of sensitive
user data makes them prime targets for cyberattacks [1]. To address these challenges, Secure-
Cart follows the V-Model software development lifecycle with a focus on stringent require-
ments, system design, and subsequent secure coding [2]. Developed using Django, Bootstrap,
PostgreSQL, and Stripe, the platform incorporates robust security measures such as secure au-
thentication, encrypted data transmission, and strict data handling [3, 4, 5, 6]. This report
focuses not only on the foundational stages of the system but also highlights its implementation
through secure code snippets, ensuring that potential vulnerabilities are identified and mitigated
both before and during development.

1

2. Requirements Phase

2.1 Functional Requirements
During the requirements-gathering phase, I identified the essential functionalities needed by
two primary user groups: the customers and the administrators. Validating these requirements
ensures that no critical security or functional requirements are overlooked [7].

Customer Requirements

Functional Area Requirements
Account Management

• Secure registration and login processes [8].

• Password recovery mechanisms [9].

• Optional multi-factor authentication (2FA) [10].

Product Browsing
• Display of product listings with images and descriptions.

• Visibility of inventory levels.

• Search and filtering capabilities to locate products effi-
ciently.

Shopping Cart and
Checkout • Ability to add products to the cart.

• Adjusting product quantities within the cart.

• Integration of secure payment methods.

• Order confirmation upon successful checkout.

Order History and
Profile Management • Viewing past orders and their statuses.

• Seamless logout functionality.

• Manage personal information.

Table 2.1: Customer Functional Requirements

2

SecureCart Development Report 3

Administrator Requirements

Functional Area Requirements
Product Management

• Adding new products to the catalogue.

• Updating existing product information and prices.

• Removing discontinued or out-of-stock products.

• Managing inventory levels to prevent stockouts or over-
stocking.

Order Management
• Viewing all customer orders and their details.

• Marking orders as completed or shipped.

• Managing refunds and processing returns efficiently.

User Management
• Viewing and managing user accounts.

• Adjusting user roles and permissions.

• Enforcing account-related security measures, such as
password resets or account lockouts.

Reporting
• Generating sales summaries to track revenue.

• Accessing inventory data to monitor stock levels.

• Analyzing user activity to inform business decisions.

Table 2.2: Administrator Functional Requirements

Verification of these requirements involves ensuring that they are clear, feasible, and security-
centric. I will review each of them in the context of cybersecurity best practices and compliance
regulations, ensuring that the functionality is both realistic and necessary.

SecureCart Development Report 4

2.2 Non-Functional Requirements
Non-functional requirements define the overall standards the system must uphold, independent
of specific functionalities. These requirements ensure that the SecureCart platform is secure,
efficient, reliable, and compliant with relevant regulations.

Category Requirements
Security

• Secure password hashing and salted storage

• Mandatory HTTPS for all network communications

• Option for two-factor authentication (2FA)

• Input validation, parameterised queries, and output encoding to
prevent common attacks

Performance
and Scalability • Handling peak traffic and large user loads without excessive la-

tency [12]

• Techniques like caching and load balancing to ensure respon-
siveness

Availability and
Reliability • High uptime, redundancy, and disaster recovery procedures

• Reliable backup strategies and failover mechanisms

Compliance and
Privacy • Conformance to data protection and privacy regulations (e.g.,

GDPR) [11]

• Proper storage and encryption of personally identifiable infor-
mation (PII)

Table 2.3: Non-Functional Requirements for the SecureCart Platform

3. System Analysis and High-Level Design

3.1 Introduction
This section details how the SecureCart platform’s requirements shape the overall structure and
high-level design. The goal is to create an architecture that meets the needs of both customers
and administrators, emphasising security, scalability, and maintainability.

3.2 Review and Consolidate Requirements
I began by validating the gathered requirements, ensuring completeness and consistency:

• Functional Needs:

– For Customers: Registration, login, product browsing, cart/checkout, order history,
profile management.

– For Administrators: Product CRUD (Create, Read, Update, and Delete), order over-
sight, user role management, and reporting.

• Non-Functional Aspects:

– Security: Encryption (in-transit and at-rest), secure authentication, authorisation,
and privacy compliance.

– Performance: Ability to handle peak traffic with minimal latency.

– Scalability: Support for horizontal or vertical scaling as user load increases.

– Compliance: GDPR or local data protection regulations.

These validated requirements form the basis for the system’s high-level architecture.

5

SecureCart Development Report 6

3.3 High-Level Architectural Style
SecureCart adopts a three-tier architecture [13]:

• UI Layer: Implements the user interface (UI) for customers and administrators, ensuring
a responsive and user-friendly design (e.g., Django templates, Bootstrap).

• Business Logic Layer: Manages core business logic, data processing, authentication,
and security enforcement (e.g., Django services and middleware).

• Data Layer: Stores persistent data on the cloud (PostgreSQL) with strict access policies
and encryption at rest.

This layered approach ensures clear separation of concerns, easier maintenance, and the
ability to apply role-based security at distinct points in the data flow.

Figure 3.1: High level Component diagram

SecureCart Development Report 7

3.4 Key Components and Interactions
While the architecture is layered, there are critical components that handle specific functionali-
ties. Below is a table highlighting the most important ones:

Component Responsibilities and Notes

Authentication • Enforces secure login (hashed passwords, optional 2FA).

• Role-based access control differentiating admins vs. cus-
tomers.

Product Management • Allows admins to add or update product info and prices.

• Inventory checks and validations to avoid negative stock.

Cart & Order Pro-
cessing

• Manages cart sessions, checkout flows, and payment integra-
tion.

• Updates order records and triggers inventory adjustments.

Reporting & Analyt-
ics

• Generates sales reports, user activity analytics.

• Summarizes product performance to inform business deci-
sions.

Security Middleware • Handles HTTPS redirection, session management, and intru-
sion detection.

• Parameterised queries and input validation to prevent SQL
injection, XSS.

Table 3.1: High-Level Components and Their Roles

Inter-Layer Communication:

• Frontend to Backend: Requests pass via encrypted protocols (HTTPS), with CSRF
tokens and session IDs.

• Backend to Database: Django’s ORM or parameterised SQL queries uphold data in-
tegrity.

• Admin Functions: Advanced privileges allow direct product/user management, pro-
tected by role-based authentication checks.

SecureCart Development Report 8

3.5 UI Design
The user interface (UI) of the SecureCart platform is designed to provide a seamless and in-
tuitive experience for both customers and administrators. In order to guide the early design
process I created a navigational flow diagram and a homepage mock-up.

3.5.1 Navigational Flow
As shown in Figure 3.2, users can quickly progress from the login screen to browsing products,
managing their cart, checking out, and viewing their profiles. Administrators can additionally
navigate to the admin page where they can view and update both users and orders.

Figure 3.2: High-level navigational flow diagram.

SecureCart Development Report 9

3.5.2 Homepage Mock-up
Figure 3.3 shows a simple mock-up of the homepage. Key elements include a site-wide navi-
gation bar with quick links to the home, cart, and profile pages, as well as a search feature and
product listings.

Figure 3.3: Mock-up of the SecureCart homepage.

3.5.3 UI Design Principles
• Consistency: An appealing colour scheme, typography, and layout.

• Clarity: Key actions (e.g., “Profile” or “Basket”) are clearly visible.

• Responsiveness: The layout adapts smoothly to various screen sizes.

• Accessibility: Semantic HTML, suitable labels, and high colour contrast ensure inclusiv-
ity.

SecureCart Development Report 10

3.6 Database Design
A robust and secure database is fundamental to the SecureCart platform, ensuring reliable stor-
age of user data, product information, and transaction records. PostgreSQL is chosen as the
primary data store due to its strong security features and scalability. Furthermore, the database
will be hosted on AWS to allow for increased flexibility and scalability.

3.6.1 Database Query Design
In order to break down the database design into a simpler format, I created a flow diagram
highlighting both users and admins’ queries.

Figure 3.4: Database

SecureCart Development Report 11

3.7 Security Considerations
Security is integrated into each layer:

• Encryption: All data in transit via TLS/HTTPS; sensitive data at rest (e.g., passwords)
hashed and salted using strong algorithms (PBKDF2) [14].

• Authentication: Django’s auth system plus optional two-factor authentication for height-
ened security.

• Authorisation: Strict RBAC, ensuring customers cannot access admin endpoints or data.

• Input Validation: parameterised queries, server-side checks on all user inputs (product
searches, checkout data, etc.) [15].

• Monitoring & Logging: Audit logs for key actions (logins, product changes, purchases)
to detect anomalies.

3.8 Performance and Scalability
To accommodate growth and periodic traffic spikes, the design includes:

• Efficient Database Queries: optimising data retrieval with indexing and query optimi-
sation.

• Caching: Reducing repeated computations or database queries by storing frequently ac-
cessed data temporarily.

• Session Management: Handling user sessions efficiently to maintain state across re-
quests.

• Static File Management: Serving and optimising static files like CSS, JavaScript, and
images for faster delivery.

• Template Rendering: Dynamically generating HTML content based on user data or
application state.

4. Detailed Design and Development Phase

This section provides specific details on the implementation of each system component, em-
phasising secure design principles. Data flow diagrams, entity relationship diagrams, class
diagrams and sequence diagrams are included to ensure clarity.

4.1 System Components

Layer Description Security Features
UI User interface using Django

templates and Bootstrap.
Content Security Policy
(CSP), input validation.

Business Logic Business logic, authentica-
tion, and data processing.

RBAC, CSRF protection, in-
put validation.

Data Persistent storage using Post-
greSQL.

Encrypted fields, strict access
controls.

4.2 Data Flow Diagrams
Level 1 Data Flow Diagram: High-level interaction between layers.

Figure 4.1: High-Level Data Flow Diagram.

12

SecureCart Development Report 13

Level 2 Data Flow Diagram: Low-level interaction between Users and the database.

Figure 4.2: Low-Level User Data Flow Diagram.

SecureCart Development Report 14

Level 2 Data Flow Diagram: Low-level interaction between Admins and the database.

Figure 4.3: Low-Level Admin Data Flow Diagram.

SecureCart Development Report 15

4.3 Data Models
Database Schema:

Table 4.1: Data Models Overview

Model Fields Security Features
User username, password, email,

is admin, is 2FA
Hashed-passwords (PBKDF2). En-
cryption at rest.

Product name, description, price, in-
ventory

Validation on updates.

Order user, status, total cost Role-based access.
Cart amount, name, total cost, in-

ventory
Validation Checks

Entity Relationship Diagram:

Figure 4.4: Entity Relationship Diagram.

SecureCart Development Report 16

4.4 Sequence Diagrams
In order to break down each part of my system into more digestible sections, I created a number
of sequence diagrams that will help guide me through the process of implementing the required
functionality [16].

Figure 4.5: User login sequence diagram

Figure 4.6: User registration sequence diagram

SecureCart Development Report 17

Figure 4.7: Forgot password sequence diagram

Figure 4.8: Product browsing sequence diagram

SecureCart Development Report 18

Figure 4.9: Searching products sequence diagram

Figure 4.10: Adding items to cart sequence diagram

SecureCart Development Report 19

Figure 4.11: Viewing the shopping cart sequence diagram

Figure 4.12: Checkout sequence diagram

SecureCart Development Report 20

Figure 4.13: Viewing order history sequence diagram

Figure 4.14: Admin managing product sequence diagram

SecureCart Development Report 21

Figure 4.15: Enabling 2FA sequence diagram

SecureCart Development Report 22

4.5 Class diagram
After creating all the sequence diagrams mapping out the core functionality of my program I
then moved onto creating a class diagram that highlights the available functions for each class
as well as their respective interactions with other classes [17].

Figure 4.16: A class diagram highlighting all functions

SecureCart Development Report 23

4.6 Secure Design Principles
SecureCart leverages Django and PostgreSQL on AWS to implement robust security measures,
ensuring the protection of user data and authentication processes. These technologies, all adhere
to the secure design principles that lay out the framework for creating a secure application
[18, 19].

Principle Implementation Using Django and Post-
greSQL on AWS

Password Hashing Django hashes passwords using the PBKDF2
algorithm, ensuring secure, irreversible storage.
Options like Argon2 or bcrypt can provide even
stronger security [20].

Encryption at Rest PostgreSQL on AWS encrypts all stored data
using AES-256, protecting sensitive user and
transactional data from unauthorized access
[21].

Secure Communication All communications between the client, server,
and database are encrypted with HTTPS and
TLS/SSL, ensuring data in transit is secure and
protected from interception [22].

Input Validation Django’s ORM and form validation sanitize and
validate user inputs to prevent common vulner-
abilities, such as SQL injection and XSS [23].

Logging and Monitoring Django provides detailed logging to track key
events like login attempts, while AWS Cloud-
Watch monitors database activity and detects
anomalies [24, 25].

Table 4.2: Secure Design Principles and Their Implementation Within SecureCart

Django hashes passwords with PBKDF2, ensuring they are stored securely in the database.
PostgreSQL on AWS encrypts data at rest with AES-256, while AWS Key Management Ser-
vice (KMS) securely handles encryption keys [26]. HTTPS and TLS/SSL ensure secure data
transmission, protecting against man-in-the-middle attacks. Django’s ORM and form valida-
tion prevent common attacks like SQL injection and XSS. Finally, Django’s logging and AWS
CloudWatch enable monitoring and anomaly detection, ensuring prompt responses to potential
threats. These measures collectively enhance platform security and data integrity.

5. Implementation and Coding

The implementation phase involved setting up the development environment, constructing core
functionalities, and integrating essential security measures to ensure the robustness and relia-
bility of the SecureCart platform. This chapter details each step of the development process,
highlighting key decisions and configurations.

5.1 Environment Setup
To begin, a Python virtual environment was established to manage project dependencies effec-
tively. This isolated environment ensures that project-specific packages do not interfere with
system-wide installations.

Figure 5.1: Creating a virtual environment

Within this environment, Django and psycopg2 were installed. Django serves as the primary
web framework, while psycopg2 facilitates seamless interaction with PostgreSQL databases.

Figure 5.2: Installing Django

Figure 5.3: Installing psycopg2 for PostgreSQL

5.2 Project Initialization
With the environment prepared, the SecureCart project was initiated using Django’s built-in
commands. This initial setup created the foundational structure necessary for further develop-
ment.

Figure 5.4: Creating the SecureCart project

Subsequently, the default Django app, named ”store”, was created to house the e-commerce
functionalities.

Figure 5.5: Creating the store app

24

SecureCart Development Report 25

5.3 Authentication Implementation
Developing secure authentication mechanisms was a priority. Login and registration pages were
crafted to allow users to create accounts and access their profiles securely. The corresponding
Python files(settings.py, urls.py, and views.py) were updated to handle these au-
thentication processes effectively.

Figure 5.6: Login.html Template

Figure 5.7: Register.html Template

SecureCart Development Report 26

The settings.py file was configured to redirect users appropriately upon accessing the
webpage.

Figure 5.8: Updated settings.py for redirections

Similarly, urls.py was modified to define the URL patterns for the login and registration
pages.

Figure 5.9: Updated urls.py for page redirections

In views.py, views were established to render the registration page and handle user input.

Figure 5.10: Updated views.py for register view

SecureCart Development Report 27

Following these updates, the login and registration pages were operational, as illustrated
below:

Figure 5.11: Login page

Figure 5.12: Registration page

SecureCart Development Report 28

5.4 Database Integration
To ensure that user authentication was securely linked to the backend, the login functionality
was connected to a PostgreSQL database hosted on AWS. This integration was achieved by
updating the settings.py file with the appropriate database configurations.

Figure 5.13: Connecting to PostgreSQL with encryption

Sensitive credentials, such as database usernames and passwords, were stored as environ-
ment variables to enhance security and prevent exposure in the codebase.

Figure 5.14: Storing sensitive data in environment variables

SecureCart Development Report 29

5.5 Password Recovery
Implementing a password recovery feature was essential for user convenience and security.
Django’s built-in functionality was utilised, requiring configuration of SMTP settings to enable
email transmissions.

Figure 5.15: Storing email credentials in environment variables

Figure 5.16: SMTP configuration in settings.py

This setup allowed users to reset their passwords seamlessly, as demonstrated below:

Figure 5.17: Forgot password page

SecureCart Development Report 30

Figure 5.18: Password reset email

SecureCart Development Report 31

5.6 Homepage Development
The homepage serves as the central hub for users to browse products. A dedicated template was
first created, and product models were developed to store relevant information such as name,
description, price, and inventory levels.

Figure 5.19: Home.html template

Figure 5.20: Product model

SecureCart Development Report 32

To ensure the homepage loaded correctly post-login, urls.py and views.py were up-
dated accordingly.

Figure 5.21: Updated urls.py for homepage

Figure 5.22: Updated views.py for homepage

The updated homepage, featuring example products, is shown below:

Figure 5.23: Homepage with product example

SecureCart Development Report 33

5.7 Navigation Bar
A navigation bar was developed to facilitate easy movement between key sections of the web-
site, including the cart, profile, admin dashboard, and logout functionalities.

Figure 5.24: Navigation bar HTML

Additionally the Logout functionality was implemented using Django’s built-in features,
ensuring users could securely exit their accounts.

Figure 5.25: Updated urls.py for logout

SecureCart Development Report 34

5.8 Search Functionality
To enhance user experience, a search bar was implemented, allowing users to filter products
based on specific criteria.

Figure 5.26: Product search.html template

Figure 5.27: Product search view in views.py

SecureCart Development Report 35

The functioning search capability is depicted below:

Figure 5.28: Working search functionality

SecureCart Development Report 36

5.9 Shopping Cart and Checkout
The shopping cart is a pivotal feature, enabling users to select and manage products before
finalising purchases. The cart template and associated models were developed to handle these
functionalities.

Figure 5.29: Cart detail.html template

Figure 5.30: Cart URL configuration

Figure 5.31: Cart detail view in views.py

SecureCart Development Report 37

Cart and CartItem models were established to track user selections effectively.

Figure 5.32: Cart and CartItem models

The functionality to add items to the cart was implemented as follows:

Figure 5.33: Add to cart functionality

SecureCart Development Report 38

Subsequent development focused on the checkout process and order confirmation. Order
and OrderItem models were created to manage transactions, and corresponding templates were
developed to facilitate user confirmations.

Figure 5.34: Order and OrderItem models

Figure 5.35: Shopping cart page

SecureCart Development Report 39

Figure 5.36: Checkout.html template

Figure 5.37: Working checkout page

Figure 5.38: Order confirmation.html template

Figure 5.39: Successful order page

SecureCart Development Report 40

5.10 Profile Page
The profile page was developed to allow users to view and manage their personal information
and order history. This involved updating URL configurations and creating dedicated templates.

Figure 5.40: Updated urls.py for profile page

Figure 5.41: Profile.html template

SecureCart Development Report 41

A corresponding view was created to render the profile page correctly.

Figure 5.42: Profile view in views.py

The functional profile page is displayed below:

Figure 5.43: Working profile page

SecureCart Development Report 42

5.11 Admin Functionality
Enhancing Django’s built-in admin dashboard was crucial for managing products, orders, and
user roles effectively. Custom functionalities were added by updating admin.py.

Figure 5.44: Updated urls.py for admin page

Figure 5.45: Admin.py with custom functions

SecureCart Development Report 43

Figure 5.46: Working admin dashboard

SecureCart Development Report 44

5.12 Two-Factor Authentication (2FA)
To bolster security, Two-Factor Authentication (2FA) was integrated, allowing users to enable
or disable this feature via their profile.

Figure 5.47: 2FA option in profile page

Templates for 2FA setup and verification were created to facilitate user interactions.

Figure 5.48: 2FA setup template

SecureCart Development Report 45

Figure 5.49: 2FA verify template

A dedicated model was then developed to store 2FA secrets securely.

Figure 5.50: 2FA model

SecureCart Development Report 46

Views and URL configurations were updated to manage the 2FA setup and verification pro-
cesses.

Figure 5.51: 2FA setup view

Figure 5.52: 2FA verify view

SecureCart Development Report 47

The default Django login was customised to incorporate 2FA, redirecting users to the 2FA
verification page post-login.

Figure 5.53: Custom login redirecting to 2FA

Figure 5.54: 2FA redirection in urls.py

SecureCart Development Report 48

QR codes for 2FA were generated using the pyotp and qrcode Python modules.

Figure 5.55: QR code generation for 2FA

SecureCart Development Report 49

The 2FA functionality was thoroughly tested, ensuring users could enable or disable it as
required.

Figure 5.56: 2FA QR code in action

Figure 5.57: Profile page with 2FA option

SecureCart Development Report 50

5.13 Secure Payment System
Integrating a secure payment system was crucial for the platform’s e-commerce functionality.
Stripe was selected for its robust API and PCI compliance, allowing for secure and efficient
payment processing.

Initially, the Stripe library was imported, and the API keys were configured via environment
variables to maintain security.

Figure 5.58: Stripe API key configuration

Figure 5.59: Retrieving Stripe API keys

Templates for handling successful and cancelled purchases were created to provide clear
feedback to users.

Figure 5.60: Cancelled order template

SecureCart Development Report 51

Figure 5.61: Successful order template

The views.py file was updated to redirect users to the Stripe purchase page during check-
out and to handle the responses for successful or cancelled payments.

Figure 5.62: Payment cancel view

SecureCart Development Report 52

Figure 5.63: Payment success view

SecureCart Development Report 53

Figure 5.64: Updated checkout view

SecureCart Development Report 54

Comprehensive testing confirmed that Stripe integration functioned as intended, as evi-
denced by the following:

Figure 5.65: Working card payments

Figure 5.66: Stripe dashboard

SecureCart Development Report 55

5.14 Security Enhancements
Ensuring the security of the SecureCart platform was paramount. Several measures were im-
plemented to protect data integrity and user privacy.

Detailed logging was set up using Django’s built-in logging features to monitor and detect
potential threats.

Figure 5.67: Logging configuration in settings.py

SecureCart Development Report 56

Figure 5.68: Detailed logging implementation

Encryption was enforced across all network traffic by mandating HTTPS, ensuring that data
in transit was secure. Additionally, all database transactions utilised TLS/SSL protocols.

Figure 5.69: Encrypted database transactions

Figure 5.70: Enforcing HTTPS connections

Furthermore, CSRF tokens and cookies were configured to be transmitted exclusively over
HTTPS, preventing interception and ensuring session security.

Figure 5.71: Securing CSRF tokens and cookies over HTTPS

SecureCart Development Report 57

5.15 UI Enhancements
The aesthetic appeal of the website was enhanced using custom CSS and the Bootstrap frame-
work, resulting in a more engaging and user-friendly interface.

Figure 5.72: Updated styles.css for website aesthetics

SecureCart Development Report 58

These enhancements culminated in a visually appealing store page, featuring a cohesive
colour scheme and improved layout.

Figure 5.73: Store page with new CSS

6. Conclusion

This report has demonstrated how SecureCart was developed using the V-Model SDLC to en-
sure both robust functionality and security. It has covered gathering and verifying require-
ments, designing a three-tier architecture, and implementing essential features including secure
login, two-factor authentication, and a Stripe-integrated checkout. Security measures, such as
encrypted data storage, HTTPS enforcement, and environment variables for sensitive informa-
tion, were systematically employed. Through careful testing, detailed logging, and a focus on
user-friendly design (including a clean Bootstrap interface), the final result is an e-commerce
platform that offers reliability, scalability, and enhanced protection for all user data.

59

7. Appendix

Project files:
https://github.com/stanly363/Secure-ecomerse-website

60

https://github.com/stanly363/Secure-ecomerse-website

Bibliography

[1] Darktrace.com. (2024). Darktrace. [online] Available at: https://darktrace.com/
cyber-ai-glossary/cybersecurity-for-retail-ecommerce.

[2] Nakkasem, T. (2020). V-Model. [online] Medium. Available at: https://medium.
com/software-engineering-kmitl/v-model-3a71622b3d82.

[3] Django (2024). Django documentation — Django documentation. [online] Django Project.
Available at: https://docs.djangoproject.com/en/5.1/.

[4] Otto, M. (2019). Introduction. [online] Getbootstrap.com. Available at: https:
//getbootstrap.com/docs/4.1/getting-started/introduction/.

[5] PostgreSQL.org. (n.d.). PostgreSQL: Documentation. [online] Available at:
https://www.postgresql.org/docs/.

[6] Stripe.com. (2024). Documentation. [online] Available at:
https://docs.stripe.com/?locale=en-GB.

[7] Fanmuy, G., Fraga, A., and Llorens, J. (2012). Requirements verification in the industry. In
*Complex Systems Design & Management: Proceedings of the Second International
Conference on Complex Systems Design & Management CSDM 2011* (pp. 145-160).
Springer Berlin Heidelberg.

[8] OWASP (2017). Authentication · OWASP Cheat Sheet Series. [online] Available at:
https://cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html.

[9] Kelseyk (2021). NIST Password Reset Guidelines. [online] Specops Software. Available
at: https:
//specopssoft.com/blog/nist-password-reset-guidelines/.

[10] NIST (2022). Multi-Factor Authentication. [online] NIST. Available at:
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/
multi-factor-authentication.

[11] ICO (2023). Overview – Data Protection and the EU. [online] ICO. Available at:
https:
//ico.org.uk/for-organisations/data-protection-and-the-eu/
overview-data-protection-and-the-eu/.

[12] wa.aws.amazon.com. (n.d.). Performance Efficiency - AWS Well-Architected
Framework. [online] Available at:
https://wa.aws.amazon.com/wellarchitected/
2020-07-02T19-33-23/wat.pillar.performance.en.html.

[13] AWS (2024). Three-Tier Architecture Overview - AWS Serverless Multi-Tier
Architectures with Amazon API Gateway and AWS Lambda. [online] Available at:
https://docs.aws.amazon.com/whitepapers/latest/
serverless-multi-tier-architectures-api-gateway-lambda/
three-tier-architecture-overview.html.

61

https://darktrace.com/cyber-ai-glossary/cybersecurity-for-retail-ecommerce
https://darktrace.com/cyber-ai-glossary/cybersecurity-for-retail-ecommerce
https://medium.com/software-engineering-kmitl/v-model-3a71622b3d82
https://medium.com/software-engineering-kmitl/v-model-3a71622b3d82
https://docs.djangoproject.com/en/5.1/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://www.postgresql.org/docs/
https://docs.stripe.com/?locale=en-GB
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://specopssoft.com/blog/nist-password-reset-guidelines/
https://specopssoft.com/blog/nist-password-reset-guidelines/
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/multi-factor-authentication
https://www.nist.gov/itl/smallbusinesscyber/guidance-topic/multi-factor-authentication
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://ico.org.uk/for-organisations/data-protection-and-the-eu/overview-data-protection-and-the-eu/
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.pillar.performance.en.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.pillar.performance.en.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/three-tier-architecture-overview.html

SecureCart Development Report 62

[14] OWASP (2025). WSTG - v4.1 — OWASP Foundation. [online] Available at:
https://owasp.org/www-project-web-security-testing-guide/
v41/4-Web_Application_Security_Testing/04-Authentication_
Testing/07-Testing_for_Weak_Password_Policy.

[15] OWASP (2019). Input Validation OWASP Cheat Sheet Series. [online] Available at:
https://cheatsheetseries.owasp.org/cheatsheets/Input_
Validation_Cheat_Sheet.html.

[16] PlantUML.com. (n.d.). Open-source tool that uses simple textual descriptions to draw
beautiful UML diagrams. [online] Available at: https://plantuml.com/.

[17] Drawing UML with PlantUML PlantUML Language Reference Guide. (n.d.). Available
at: https://pdf.plantuml.net/1.2019.3/PlantUML_Language_
Reference_Guide_en.pdf [Accessed 20 Jan. 2025].

[18] OWASP. (n.d.). Secure Product Design - OWASP Cheat Sheet Series. [online] Available
at: https://cheatsheetseries.owasp.org/cheatsheets/Secure_
Product_Design_Cheat_Sheet.html.

[19] National Cyber Security Centre (2019). Secure design principles. [online] Available at:
https://www.ncsc.gov.uk/collection/
cyber-security-design-principles.

[20] Django Project. (2024). Password management in Django — Django documentation.
[online] Available at: https:
//docs.djangoproject.com/en/5.1/topics/auth/passwords/.

[21] Amazon.com. (2025). Encrypt an existing Amazon RDS for PostgreSQL DB instance -
AWS Prescriptive Guidance. [online] Available at: https:
//docs.aws.amazon.com/prescriptive-guidance/latest/patterns/
encrypt-an-existing-amazon-rds-for-postgresql-db-instance.
html [Accessed 21 Jan. 2025].

[22] CLOUDFLARE (2024). What is Transport Layer Security? — TLS protocol —
Cloudflare UK. Cloudflare. [online] Available at: https://www.cloudflare.com/
en-gb/learning/ssl/transport-layer-security-tls/.

[23] Duisebekova, K., Khabirov, R. and Zholzhan, A., 2021. Django as Secure
Web-Framework in Practice.(1), pp.275-281.

[24] AWS (2024). What is Amazon CloudWatch? - Amazon CloudWatch. [online]
Amazon.com. Available at: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.

[25] Django Project. (2025). Logging — Django documentation. [online] Available at:
https://docs.djangoproject.com/en/5.1/topics/logging/
[Accessed21Jan.2025].

[26] AWS (2024). What Is AWS Key Management Service? - AWS Key Management
Service. [online] docs.aws.amazon.com. Available at: https://docs.aws.amazon.
com/kms/latest/developerguide/overview.html.

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/04-Authentication_Testing/07-Testing_for_Weak_Password_Policy
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://plantuml.com/
https://pdf.plantuml.net/1.2019.3/PlantUML_Language_Reference_Guide_en.pdf
https://pdf.plantuml.net/1.2019.3/PlantUML_Language_Reference_Guide_en.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles
https://docs.djangoproject.com/en/5.1/topics/auth/passwords/.
https://docs.djangoproject.com/en/5.1/topics/auth/passwords/.
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/encrypt-an-existing-amazon-rds-for-postgresql-db-instance.html
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/.
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.
https://docs.djangoproject.com/en/5.1/topics/logging/ [Accessed 21 Jan. 2025].
https://docs.djangoproject.com/en/5.1/topics/logging/ [Accessed 21 Jan. 2025].
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html.
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html.

	Introduction
	Requirements Phase
	Functional Requirements
	Non-Functional Requirements

	System Analysis and High-Level Design
	Introduction
	Review and Consolidate Requirements
	High-Level Architectural Style
	Key Components and Interactions
	UI Design
	Navigational Flow
	Homepage Mock-up
	UI Design Principles

	Database Design
	Database Query Design

	Security Considerations
	Performance and Scalability

	Detailed Design and Development Phase
	System Components
	Data Flow Diagrams
	Data Models
	Sequence Diagrams
	Class diagram
	Secure Design Principles

	Implementation and Coding
	Environment Setup
	Project Initialization
	Authentication Implementation
	Database Integration
	Password Recovery
	Homepage Development
	Navigation Bar
	Search Functionality
	Shopping Cart and Checkout
	Profile Page
	Admin Functionality
	Two-Factor Authentication (2FA)
	Secure Payment System
	Security Enhancements
	UI Enhancements

	Conclusion
	Appendix

