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Abstract

This report presents the design, implementation and security evaluation of SCIV,
a Java-based Supply Chain Integrity Verifier. Motivated by the December 2020 Solar-
Winds supply-chain compromise, SCIV integrates digital signature validation, SBOM
verification, YARA rule scanning and entropy analysis to detect tampering in delivered
artefacts. The tool follows object-oriented principles and leverages best practices in
secure Java development. A comprehensive security audit confirms SCIV’s resilience
against common threats.
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1 Introduction

The 2020 SolarWinds SUNBURST breach showed that a single back-doored library, once
signed by a trusted key, can compromise thousands of downstream systems before detection.
Certificates alone are therefore not enough; every shipped artefact must be matched to
its SBOM and screened for hidden malware or packing tricks. The Supply-Chain Integrity
Verifier (SCIV) meets this need. Written in modern Java, SCIV verifies signatures and signer
policy, cross-checks component hashes against a CycloneDX SBOM, scans with YARA rules,
and flags unusual entropy, all from within easy Swing GUI. These layered controls close the
gaps that SUNBURST exploited and align with secure software development frameworks.
The report that follows summarises the SolarWinds incident, explains SCIV’s architecture
and language choices, and presents a security audit confirming its effectiveness and adherence
secure coding practice.
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2 Background and Research

2.1 Overview of the SolarWinds Cyber Incident

In December 2020 SolarWinds revealed that its Orion network-management suite had been
compromised in the SUNBURST supply-chain attack [FireEye, 2020]. The APT29 group
(“Cozy Bear”) infiltrated the build environment, inserted a back-door, and—using Solar-
Winds’ own CI/CD pipeline—built, signed, and distributed malicious updates from March
to June 2020 [SolarWinds, 2020]. More than 33,000 organisations, including critical national-
infrastructure operators and multiple US federal departments, deployed the tainted code
before FireEye uncovered the breach nearly nine months later [FireEye, 2020].

2.2 Vulnerabilities Exploited

Vulnerability Manifestation in the SolarWinds pipeline

Absence of SBOM
validation

Orion updates lacked an authoritative Software Bill of
Materials; no deterministic mapping existed between declared
and shipped components, so tampered DLLs (e.g.
SolarWinds.Orion.Core.BusinessLayer.dll) went unnoticed.

Over-reliance on
code signing

A valid vendor certificate was considered a sufficient proof of
integrity; the signed payload itself was not further scrutinised.

No fine-grained
signer policy

Any certificate issued under SolarWinds’ PKI hierarchy could
sign production builds; subject distinguished names (DNs) and
key-usage constraints were not enforced programmatically.

Lack of pre-release
threat scanning

Artefacts were not inspected with YARA rules, static-analysis
heuristics, or sandbox detonation before distribution.

No entropy or
obfuscation
analysis

Build artefacts were not examined for anomalous entropy that
typically accompanies packed or encrypted payloads.

Poor CI/CD
segregation

Build servers possessed continuous, interactive access to signing
keys and network segmentation and multi-party approval gates
were minimal.

Table 1: Principal weaknesses that enabled the SUNBURST compromise
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2.3 Observed Impact

Impact Domain Representative Consequence

Government breach US Departments of Homeland Security, Treasury,
Commerce, Justice, Energy, and State experienced
unauthorised access to e-mail and internal systems,
prompting emergency directives by CISA [FireEye, 2020].

Security-tool
exposure

FireEye’s proprietary red-team tooling was exfiltrated,
forcing the firm to publish counter-signatures and detection
rules [FireEye, 2020].

Operational
disruption

Thousands of organisations conducted large-scale
incident-response programmes, including certificate
revocation, password resets, and workstation
re-imaging—costing hundreds of millions of dollars
collectively [FireEye, 2020].

Regulatory
momentum

Executive Order 14028 (May 2021) introduced mandatory
SBOM requirements for suppliers to the US Federal
Government, accelerating similar initiatives (e.g., UK NCSC
software-transparency guidance) [The White House, 2021].

Table 2: Documented effects of the incident

2.4 Rationale for a Supply-Chain Integrity Verifier (SCIV)

The identified shortcomings expose a systemic gap: cryptographic signatures are useful; how-
ever, they do not by themselves prove that the compiled artefact matches the vetted source
code or that it is free of malicious modification. The proposed Supply-Chain Integrity
Verifier (SCIV) closes this gap by adding certificate-policy checks [CERT Oracle Secure
Coding Team, 2019], SBOM hash validation [NIST, 2015], YARA-based malware scanning
[VirusTotal, 2025], and entropy analysis during the build phase [Lyda and Hamrock, 2007],
ensuring only fully-validated code reaches production or end-users.
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2.5 Mapping SolarWinds Gaps to SCIV Controls

Gap in SolarWinds SCIV Countermeasure Implemented In

Unsigned or wrongly
signed artefacts

X.509 signature verification,
OCSP/expiry/key-usage
enforcement

SignatureValidator.java,
SwingUI.java

Lack of signer policy YAML-driven subject-DN
allow-list

PolicyEngine.java,
policy.yaml

Missing SBOM
integrity

Component hash comparison
against declared SBOM

SBOMValidator.java

No malware heuristics Recursive YARA scan of
artefacts and nested files

YaraScanner.java

No packing/entropy
analysis

Shannon-entropy threshold
alert (>7.0)

EntropyAnalyser.java

Insufficient workflow
adoption

Desktop GUI encouraging
drag-and-drop validation and
policy toggling

SwingUI.java

Table 3: SCIV feature matrix

2.6 Mitigating the Identified Gap

By combining cryptographic verification, policy enforcement, component-integrity valida-
tion, heuristic malware scanning, and entropy-based anomaly detection within a single,
user-friendly workflow, SCIV delivers a defence-in-depth layer that upstream vendors such
as SolarWinds lacked [Smith, 2003]. Had comparable controls been mandatory in the Orion
build pipeline, the malicious DLL would almost certainly have been flagged at one of the
following detection points: the SBOM hash check, the YARA scan, or the entropy threshold.
Consequently, widespread compromise could have been prevented—or at minimum detec-
ted—long before customer deployment.
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3 Tool Description and Justification

3.1 High-Level Goal

The Supply-Chain Integrity Verifier (SCIV) is designed to act as a “gatekeeper” at
the end of a continuous-integration/continuous-deployment (CI/CD) pipeline. Its purpose
is to ensure that any software artefact (.zip, .jar, or vendor driver package) is authentic,
untampered, and malware-free before it proceeds to staging or production. The tool therefore
brings multiple layers of assurance into a single, automatable command.

3.2 Overall Architecture

Figure 1: SCIV Architecture Diagram
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3.3 Core Components

Component (Java) Responsibility

SignatureValidator Reads an artefact and detached or embedded signature;
validates the signature against an X.509 certificate (SHA-
256 with RSA, Bouncy Castle fallback). OCSP, key-usage,
and EKU checks are exposed to the GUI as toggles [Oracle,
2023, Bouncy Castle Inc., 2025].

PolicyEngine Loads policy.yaml and enforces subject-DN allow-lists
plus mandatory YARA rules; supplies an immutable
Policy view [Somov, 2025].

SBOMValidator Parses CycloneDX JSON, compares declared SHA-256
hashes to actual files extracted from the ZIP, and returns a
list of mismatches [CycloneDX Core Working Group, 2024].

YaraScanner Invokes an external yara binary for both built-in and
user-imported rules, collating rule hits into a readable list
[VirusTotal, 2025].

EntropyAnalyser Computes Shannon entropy per byte to warn of potential
packing/encryption when the score exceeds a threshold (de-
fault 7.0) [Lyda and Hamrock, 2007].

SwingUI Desktop wrapper around CLI; supports drag-and-drop, live
policy edits, YARA import, and coloured real-time output
[Oracle, 2025].

Report Immutable record capturing pass/fail results and lists of
findings; serialises to readable JSON [FasterXML, 2025].

Table 4: Principal SCIV classes and their responsibilities
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3.4 Programming Language and Paradigm Justification

Given SCIV’s needs for strong cryptography, SBOM parsing, YARA integration, entropy
computation, and a user-friendly GUI, I evaluated three paradigms and three implement-
ation languages. Tables 5 and 6 summarise the trade-offs. My selection prioritises robust
security libraries, cross-platform distribution, modular design, and maintainability in a rap-
idly evolving threat landscape.

Paradigm Strengths for SCIV Trade-offs

OOP Encapsulates security layers
(SignatureValidator, PolicyEngine); maps
naturally to Swing UI; easy unit testing
with classes/records.

Risk of over-engineering;
inheritance misuse can
introduce tight coupling.

FP Pure functions and immutability simplify
concurrency and testing; reduces
side-effects in SBOM parsing and entropy
analysis.

Steeper learning curve; fewer
GUI frameworks; may require
verbose integration code for
YARA and Swing.

EDP Event-driven model fits GUI callbacks
and asynchronous processing of streams
(OCSP checks, JSON parsing).

Callback complexity and
global state management can
be error-prone.

Table 5: Comparison of Programming Paradigms for SCIV

Language Paradigms Security and Libraries GUI and Deployment

Java 17 OOP, EDP Mature JCA/JCE, Bouncy
Castle; Jackson, SnakeYAML;
robust thread model.

Built-in Swing;
cross-platform JARs;
extensive IDE support.

Rust OOP, FP RustCrypto, serde_json for
SBOM; memory safety; C FFI
for YARA.

Static binaries; limited
GUI (egui, gtk-rs);
steeper syntax.

Haskell FP Cryptonite, aeson for JSON;
pure functions for entropy.

Minimal GUI (gtk2hs);
fewer YARA bindings;
static executables.

Table 6: Comparison of Implementation Languages for SCIV
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3.5 Language and Paradigm Selection

After evaluating Java, Rust and Haskell across OOP, FP and EDP paradigms against SCIV’s
requirements, I decided to use Java with an object-oriented paradigm and its built-in Swing
UI. The reasoning for this can be seen below:

Summary of Selection

• Language: Java 17 I chose Java 17 for its stable, cross-platform JVM, mature
JCA/JCE cryptography and rich ecosystem (Jackson, SnakeYAML, Bouncy Castle).

• Paradigm: Object-Oriented Programming I adopted OOP to encapsulate each
security function (signature, SBOM, entropy, YARA) into coherent, testable classes
and records.

• GUI: Swing I opted for Swing to deliver a lightweight, dependency-free desktop
interface with built-in components and seamless integration into the OOP design.
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3.6 Key Security Features

SCIV Feature Threat Mitigated

X.509 signature verification
+ OCSP

Prevents deployment of unsigned or
revoked artefacts; detects certificate
mis-issuance and revoked developer
credentials.

Policy-enforced subject
allow-list

Blocks rogue developers or
compromised CI keys from signing
production builds.

SBOM hash validation Detects in-build tampering or
compiler back-door insertion (cf.
SUNBURST DLL swap).

YARA scanning Flags embedded malware, packers,
shell-code stagers, or known
suspicious byte patterns.

Entropy threshold Heuristic detection of
packed/encrypted binaries often
used to conceal payloads.

GUI toggles +
drag-and-drop

Lowers entry barrier, encouraging
routine use and reducing human
error in release processes.

Table 7: Feature–to–threat mapping

3.7 Additional Extensibility Hooks

• Pluggable exporters. The Report record can be serialised to JSON, written to an
ELK stack, or forwarded to Slack via webhook [FasterXML, 2025].

• SLSA integration. Future work could add provenance attestations (linking source
commit → build → binary) to match SLSA Level 3 requirements [NIST, 2015].

• Isolated sandbox runner. A class stub already exists to execute dynamic-analysis
VMs (e.g. Cuckoo) for binaries that pass static checks but still need behavioural analysis
[Smith, 2003].
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3.8 Implementation

Having outlined SCIV’s design goals and architecture, this section highlights how the tool
is implemented in code. It traces control flow in the exact order a verification run executes,
highlighting the key Java classes, library dependencies, and secure-coding techniques that
bring each security layer to life.

3.8.1 Signature validation

The initial barrier in SCIV is cryptographic verification via SignatureValidator.verify,
which returns true if the signature is valid and aborts on failure, conserving resources and
maintaining a fail-closed posture [Oracle, 2023].

Public interface
SignatureValidator exposes a single method, verify(), returning a Boolean: true for a
valid signature, false otherwise. All subsequent stages check this value and exit early on
false.

Verification process

1. Input normalisation: Convert artefact, detached signature, and certificate paths to
absolute, canonical form; verify readability with Files.isReadable(). Missing files
cause immediate failure.

2. Certificate parsing: Detect and strip PEM headers (e.g., ––-BEGIN CERTIFICATE––-);
decode base-64 bodies or parse DER bytes directly.

3. Algorithm setup: Install Bouncy Castle provider in a static block to ensure availab-
ility of SHA256withRSA, with an easy optional transition to RSA-PSS or Ed25519.

4. Signature initialisation: Extract the public key from the X509Certificate, in-
stantiate a JCA Signature object, and stream artefact bytes through update() to
minimise memory usage.

5. Verification and logging: Invoke Signature.verify(); on exceptions or a false

result, log a concise error to System.err and return false, swallowing exceptions
internally simplifies caller logic.
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Figure 2: SignatureValidator Class Implementation

By first validating signatures the SCIV aligns with CI best practices, I prevent unneces-
sary processing of unauthenticated artefacts.
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3.8.2 Policy engine

A valid signature proves integrity, but not authorisation; any developer key comprom-
ised by an attacker would still pass cryptographic tests. SCIV therefore introduces the
PolicyEngine class, which consults a human-maintained YAML file to decide whether the
subject distinguished name (DN) embedded in the certificate is approved for production use
[Thompson et al., 2003].

Policy structure

allowedSubjects:

- CN=Alice Dev,O=Example Ltd,C=GB

yaraRules:

- rules/default_rule.yar

Only two top-level keys are mandatory, allowedSubjects and yaraRules, though addi-
tional keys—such as expiry grace periods or minimum key lengths—may be added without
any code change.

Engine workflow

1. YAML loading. The constructor attempts to read policy.yaml from the classpath;
if that fails it falls back to a user-supplied path flag. SnakeYAML is configured with
safe types so arbitrary object instantiation cannot occur.

2. Record creation. The parsed lists are stored inside a Java 17 record called Policy.
Because records are implicitly final and shallow-immutable, thread safety is assured
without extra synchronisation.

3. Authorisation check. The convenience method subjectAllowed performs a simple
membership test; an empty allow-list is interpreted as “no restrictions” to support
gradual policy roll-out.

4. Rule propagation. The list returned by getPolicy().yaraRules() is handed down
intact to YaraScanner, ensuring policy and scan behaviour stay in lock-step.

Concurrency considerations
When the Swing GUI permits edits to policy.yaml, a write lock is acquired with FileChannel.

tryLock. After the save completes, the GUI instantiates a new PolicyEngine so that on-
going CLI operations never reference a half-written file.
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Failure behaviour
If policy.yaml is missing, unreadable, or malformed, the constructor throws an IOException.
This stops SCIV immediately with a non-zero exit code, preventing a silent “allow-all” scen-
ario.

Figure 3: PolicyEngine.java – YAML parse and subjectAllowed logic

Figure 4: Policy.java Class

By separating authorisation from pure cryptographic validation, SCIV enforces a robust
two-step rule: a payload must be both signed correctly and signed by someone on the allow-
list before it can proceed further in the pipeline.
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3.8.3 SBOM Validator

The SBOM validation layer ensures that the artefact’s declared Software Bill of Materials
matches its actual contents. All mismatches are collected and returned as human-readable
strings [Kishimoto et al., 2025].

Public interface
SBOMValidator exposes a single static method: validate() it returns a List<String> of
discrepancy messages (empty if everything matches).

Validation process

1. JSON parsing: Stream the SBOM JSON from sbomStream into a Jackson JsonNode

tree via ObjectMapper.readTree().

2. Component array extraction: Navigate to root.path("components"); if it isn’t
an array, return an empty list.

3. Per-component checks:

a. Extract the component’s name, the package URL (purl) as filePath, and the
declared SHA-256 hash from comp.path("hashes").

b. Look up ZipEntry entry = zip.getEntry(filePath) in the provided ZipFile.

c. If entry is null, add name + ": missing in artefact" to the mismatch list
and continue.

d. Otherwise, read all bytes from zip.getInputStream(entry), compute their SHA-
256 via the private sha256(byte[]) helper, and compare (case-insensitive) to the
expected hash.

e. On mismatch, add name + ": hash drift" to the list.

4. Error handling: Wrap the entire loop in a try/catch; on any exception, append
"SBOM validation error: " + e.getMessage() and proceed.

5. Result: Return the accumulated list of mismatches.
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Figure 5: SBOMValidator.java Implementation

Figure 6: SBOM.json Example

This approach provides a clear, declarative report of any divergence between the SBOM
and the artefact, facilitating automated enforcement of bill-of-materials integrity.
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3.8.4 Yara Scanner

The YARA scanner layer detects malicious patterns in the artefact by matching against a set
of YARA rules. Any rules that fire are reported with their rule names and matched offsets
[VirusTotal, 2025].

Public interface
YaraScanner provides a single static method: scan() It returns a List<MatchResult>,
where each MatchResult contains the rule name, namespace, and list of byte offsets at
which the rule matched.

Scanning process

1. Rule compilation: For each file in ruleFiles, parse YARA syntax and compile to
a YaraCompiler object using the native YARA library. Compilation errors are logged
and skipped.

2. Scanner initialisation: Instantiate a YaraScannerInstance and load all compiled
rules into its context.

3. Artefact reading: Open the artefact as a RandomAccessFile and map it to memory
via FileChannel.map() to support efficient random-access scanning.

4. Rule execution: Execute scanner.scan(memory, callback) where callback col-
lects matches, recording rule metadata and matched offsets.

5. Result aggregation: After scanning, aggregate all MatchResult objects into a list.
If no matches, return an empty list.

6. Error handling: Wrap compilation and scan loops in try/catch; on exception, log
to System.err and continue with remaining rules or scanning, ensuring a best-effort
scan.
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Figure 7: YaraScanner.java Implementation

Figure 8: Yara Rule Implementation Preventing Solar Winds Backdoor

By leveraging native memory mapping and the official YARA engine, SCIV efficiently
identifies known malicious signatures while handling errors efficiently.
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3.8.5 Entropy analyser

Even after an artefact has passed signature, policy, SBOM and YARA checks, it may still
harbour obfuscated or packed code designed to hinder inspection [Lyda and Hamrock, 2007].
Therefore, SCIV finishes its static analysis with a heuristic entropy test implemented by the
class EntropyAnalyser.

Algorithm The public method calculateEntropy accepts a Path to any file and returns
its Shannon entropy in bits per byte. The implementation:

1. Reads the file into a byte array via Files.readAllBytes. (For large artefacts the
JVM’s compressed oops means a 100 MB ZIP consumes roughly 100 MB of heap—well
within CI-agent limits.)

2. Builds a 256-element frequency table. Each byte value indexes directly into the array,
yielding O(n) time and O(1) additional space.

3. Computes H = −
∑

pi log2 pi where pi is the relative frequency of byte value i.

4. Returns 0.0 for empty files to avoid division-by-zero.

Threshold and output
A score greater than 7.0 bits per byte triggers a warning: legitimate executables rarely ex-
ceed this unless compressed with UPX or encrypted. The threshold is exposed as a constant
so individuals can tighten or relax the rule.

Performance
The entropy calculation is intentionally lightweight. Using a single pass over the byte stream
and a fixed 256-element histogram, the routine runs in linear time with constant additional
memory, aside from the byte array that holds the file contents. Because it manipulates
only primitive arrays, the work is largely cache-based and generates virtually no temporary
objects, keeping garbage-collection overhead to a minimum even when analysing large archive
files.
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Limitations
High entropy alone is not proof of malware; many vendors now ship LZMA-packed drivers.
SCIV therefore reports entropy as a non-fatal finding: the exit code remains zero unless
other checks also fail, but the JSON report flags the condition for human review.

Figure 9: Core logic of EntropyAnalyser() Class

Including entropy analysis provides a final test that complements deterministic valid-
ations. It highlights highly compressed or encrypted payloads that might otherwise glide
through signature and policy controls undetected.
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3.8.6 Swing GUI

In order to improve the tools ease of use, SCIV offers a Swing front-end (SwingUI). A compact
form at the top collects file paths, while a scrollable panel beneath displays coloured results
[Oracle, 2024].

Core workflow
Pressing Verify (or drag-and-drop) invokes the same pipeline as the CLI:

SignatureValidator

↓
PolicyEngine

↓
EntropyAnalyser

↓
SBOMValidator

↓
YaraScanner

Findings populate the text pane and a back-end Report object (for later JSON export).

Toggle switches
Administrators can enable/disable specific validation steps at run-time.

Check-box Effect How it works

OCSP
revocation

Toggle on-line revocation
lookup

Queries the CA’s OCSP responder;
unreachable → status unknown.

Expiry
validation

Enforce
NotBefore/NotAfter

Rejects certs outside their validity
window.

Key-usage Require
digitalSignature

Checks KeyUsage extension’s bit.

Extended
key-usage

Require code-signing
OID

Verifies EKU OID 1.3.6.1.5.5.7.3.3
present.
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GUI controls
On-screen actions let operators adjust trusted sources and without hand-editing files.

GUI control Purpose How it works

Extra SHA-256
hash

Whitelist a failing SBOM
hash (session)

Adds hash to an in-memory
allow-list cleared on exit.

Add subject DN Extend certificate allow-list Appends DN to
policy.yaml then reloads
policy.

Add SBOM
entry

Inject late library into
SBOM

Writes name+hash to
SBOM and refreshes cache.

Figure 10: “Add hash” option used to whitelist an SHA-256 that fails the SBOM check.

Figure 11: “Add DN” option for extending the certificate allow-list.
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Figure 12: “Add SBOM entry” option for injecting a late library into the SBOM.

YARA rule handling
Buttons Edit Rule and Import Rule let users modify built-in rules or add external .yar files
(stored beside the JAR and scanned automatically).

Figure 13: YARA rule editor and importer.
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Verification Implementation
The following screenshots present the run-time console output from runVerification, shown
step by step.

Figure 14: Inside runVerification: (signature validation, certificate loading, OCSP chain).
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Figure 15: Inside runVerification: (certificate-expiry, key-usage, and EKU checks).
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Figure 16: Inside runVerification: (entropy analysis, SBOM reconciliation, YARA scan).
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SwingUI Configuration
The snippet below instantiates the Swing components, arranges them with a border-layout
wrapper, and wires each control to its corresponding verification handler.

Figure 17: Main SwingUI window with path selectors, toggle switches and live output.

29



SwingUI Working Example
The screenshot below highlight the functional SwingUI interface with all required features
and logic implemented.

Figure 18: Main SwingUI window with path selectors, toggle switches and live output.
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4 Security Audit

4.1 Objective and Scope

The purpose of the security audit is to evaluate the robustness, correctness, and resilience of
the Supply Chain Integrity Verifier (SCIV) against a defined set of threats. This evalu-
ation seeks to ensure that the tool’s implementation not only achieves functional correctness
but also adheres to secure coding principles and avoids introducing new vulnerabilities. The
audit focuses on the following areas:

• Validation of cryptographic signature handling.

• Enforcement of policy-based access controls.

• Correct processing and parsing of SBOM input.

• Stability and isolation of YARA rule execution.

• Proper entropy computation and overflow/error handling.

• GUI toggles and user input validation in Swing interface.

4.2 Audit Methodology

The audit employed a combination of the following techniques:

• Functional and boundary testing of the program using passing, failing, and mal-
formed test files ensuring the SCIV works as intended [Dobslaw et al., 2020].

• Static code analysis using IntelliJ IDEA’s built-in inspection tools and SpotBugs,
with particular attention to unchecked inputs, error-handling paths, and misuse of Java
cryptographic APIs [Afrose et al., 2021].

• Manual review of key Java classes (SignatureValidator, SBOMValidator, PolicyEngine,
EntropyAnalyser, etc.) to confirm adherence to secure design practices [Meng et al.,
2017].
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4.3 Functional and boundary testing

The GUI, CLI and core validators were exercised with five end-to-end scenarios covering the
reference success-path and all critical failure paths.

Passing case — Valid driver package A well-formed archive containing a correctly
signed driver, an unexpired certificate chain and a schema-valid CycloneDX 1.5 SBOM pro-
duced ticks for every row (See Figure 19).

Figure 19: All tests pass successfully for valid zip and drivers

Failing case — Invalid digital signature A driver binary was tampered with after
signing, breaking the Authenticode envelope; the verifier therefore displayed “Signature
Valid: No” and flagged the package as untrusted (Figure 20).

Figure 20: Invalid signature test fails successfully
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Entropy alarm — Suspiciously packed binary A driver binary filled entirely with
random bytes resulted in an entropy score of 8.0 (threshold 7.0). The GUI correctly flagged
this with “Potential Packing or Encryption” (Figure 21).

Figure 21: High-entropy warning correctly displayed

Failing case — Hash mismatch with SUNBURST backdoor A driver binary was
altered after SBOM generation and the archive also contained a SUNBURST-infected DLL.
Verification highlighted both the SBOM hash drift and the SUNBURST hit (see Figure 22).

Figure 22: Detection of SBOM hash drift and SUNBURST backdoor.

33



Failing case — Corrupt archive A ZIP with a deliberately corrupted End-of-Central-Directory
record was supplied. The application caught the resulting exception, displayed an error ban-
ner, and terminated verification early with exit-code 1 (Figure 23).

Figure 23: Corrupted zip file safely fails validation

Summary

Table 8 confirms that the tool behaves as intended: a fully compliant archive passes all
checks with exit code 0, whereas each injected fault—whether cryptographic, structural,
integrity-related, or malicious—produces a clear GUI warning and a non-zero exit code.
Overall, the tests show consistent success on the reference case and reliable rejection of
every hostile or malformed input.

Scenario GUI outcome Exit code As expected?

Valid package All checks passed 0 Yes
Invalid
signature

“Signature Valid:
No” row shown

1 Yes

High-entropy
binary

“Potential
Packing or
Encryption” row
shown

2 Yes

SBOM drift
+
SUNBURST

Hash-drift row
and SUNBURST
alert shown

2 Yes

Corrupt ZIP Error banner;
verification
aborted

1 Yes

Table 8: Functional-test outcomes and Error codes
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4.4 Static code analysis

Static analysis complements the functional tests by revealing latent coding defects that
may never appear at run-time. The project was scanned with SpotBugs 4.8.5 and the
findsecbugs plug-in (effort Max, threshold High). Table 9 highlights the critical bugs located
within the code base which I could then fix.

Issue Severity Description

Command injection risk High Shell commands built by concatenating
strings can be hijacked.

Default encoding usage High Converting byte arrays to strings
without specifying a charset uses plat-
form default.

Hard-coded password High Storing a keystore password literal in
code is insecure.

Path traversal vulnerability High User inputs passed directly to file APIs
may allow directory escapes.

Unsafe hash comparison Medium Comparing cryptographic hashes with
String.equals() is vulnerable to tim-
ing attacks.

Mutable internal state exposure Medium Returning or storing mutable collec-
tions without copying exposes intern-
als.

I/O in constructor Medium Performing file I/O inside constructors
can leave objects half-initialised on fail-
ure.

Platform-dependent newlines Medium Using “\n” in formatted strings is not
portable across operating systems.

Table 9: Ouput of Static analysis (Medium and High severity issues)
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Command Injection Fix

The shell-command invocation was refactored to use ProcessBuilder with explicit argu-
ments, eliminating the risk of arbitrary command injection.

Figure 24: Vulnerable Runtime.exec() string concatenation.

Figure 25: ProcessBuilder used instead of string concatenation.

Default Encoding Correction

All conversions from byte[] to String now specify StandardCharsets.UTF_8, preventing
platform-dependent encoding issues.

Figure 26: Using platform-default charset by not including explicit encoding.

Figure 27: Added explicit UTF-8 charset to new InputStreamReader(...) calls.
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Externalised Keystore Password

The hard-coded keystore password was removed and is now loaded from a .env file at startup,
removing sensitive values from the source code.

Figure 28: Hard-coded keystore password literal in code.

Figure 29: Keystore password loaded from an .env file instead of hardcoded.

Path Traversal Guard

All user-supplied file paths are now validated and sanitised—rejecting any containing “..”
or absolute prefixes—before invoking Paths.get() to eliminate directory-escape attacks.

Figure 30: No validation on user-supplied file paths.

Figure 31: Added path-sanitisation logic to reject unsafe inputs before file access.
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Representation Exposure Prevention

Constructors and getters for Policy and Report now defensively copy or wrap lists in un-
modifiable views, preventing callers from mutating internal state.

Figure 32: Public record exposing mutable list fields.

Figure 33: Use of List.copyOf() and unmodifiable getters to protect internal collections.

Unsafe Hash Comparison Fix

Hash comparisons now use a constant-time method (‘MessageDigest.isEqual‘) instead of
‘String.equals‘, preventing timing attacks.

Figure 34: Vulnerable ‘String.equals()‘ function.

Figure 35: Replaced ‘String.equals()‘ with ‘MessageDigest.isEqual()‘.
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I/O in Constructor Fix

All file I/O has been moved out of the constructor into a static factory method, ensuring
objects are only fully initialised after successful I/O calls.

Figure 36: Public constructor invokes I/O call during instantiation.

Figure 37: Constructor made private; ‘load()‘ factory performs I/O before instantiation.

Platform-Dependent Newlines Fix

String concatenation now uses ‘System.lineSeparator()‘ or ‘%n‘ so line breaks render correctly
on any OS.

Figure 38: Use of platform dependant syntax (’\n’).

Figure 39: Replaced \n with ‘System.lineSeparator()‘.
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4.5 Manual Review Key Findings

In this section, I present the key findings from my manual review, highlighting the tool’s
core strengths, and error handling functionality.

Audit Focus Observation

Signature validation The use of java.security.Signature and X.509
certificate loading is correct and secure. PEM, DER
and base64 encodings are correctly handled. OCSP
and EKU toggles in the GUI correctly propagate to
runtime checks.

Policy enforcement Subject-DN checks are enforced via a YAML-driven
allowlist. GUI amendments to policy.yaml are
properly persisted. Potential race conditions were
mitigated by write-locking during policy updates.

SBOM parsing All SBOM input is deserialised via Jackson with safe
defaults. Field lookups are guarded with .path()

accessors, preventing null dereference. Non-matching
or absent entries are logged without crashing the tool.

YARA execution Rules are extracted to a temporary file and scanned
via a child yara process. Rule output is read safely,
and error streams are suppressed from GUI exposure.
Temporary files are deleted reliably in finally blocks.

Entropy analysis Shannon entropy is calculated using safe arithmetic.
Byte arrays are bounded, and division-by-zero for
empty files is explicitly guarded.

GUI controls All Swing components (text fields, checkboxes, file
selectors) include basic input validation. Only valid
SHA-256 hashes can be added to SBOM or allowlists.
Errors are shown via safe modal dialogs.

Table 10: Security audit findings summary
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4.6 Limitations and Future Audit Directions

While the preceding tests demonstrate solid coverage of core functionality and error hand-
ling, several gaps remain. Addressing these will further strengthen the tool’s security and
resilience:

• Dynamic/runtime analysis missing. The current audit has not included any sand-
boxed or instrumented execution of untrusted drivers or SBOMs, meaning that subtle
runtime behaviours and potential malicious payloads remain undetected by purely
static checks [Payer, 2012].

• Limited platform/performance coverage. All functional and performance tests
were conducted on a single operating system, Java runtime, and hardware profile, so
the tool’s behaviour under different OS environments, JDK versions, and high–load
scenarios is still unknown [Chen et al., 2017].

• No dependency-scan automation. Third-party libraries and plugins (e.g. Jackson,
YARA, SpotBugs) are not continuously monitored for newly disclosed vulnerabilities,
leaving the supply chain exposed to unpatched security issues [Xu et al., 2024].

By extending the audit to include dynamic analysis, cross-platform performance checks,
dependency monitoring the SCIV tool can achieve a more comprehensive and proactive
security posture.
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5 Conclusion

This security audit establishes that SCIV adheres to rigorous cryptographic standards, en-
forces comprehensive policy controls, and implements robust input-validation mechanisms.
Through both static code inspections and end-to-end functional testing, the tool has demon-
strated reliable detection of malformed archives, signature tampering, and other adversarial
inputs, while maintaining clear error reporting and graceful failure modes. To further en-
hance its security posture, future efforts will focus on integrating sandboxed dynamic ana-
lysis and adopting CI-driven regression and coverage metrics—ensuring that SCIV remains
resilient against both current and emerging threats.
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