Analysis of Network Packets and Security Enhancements

Stanley Shaw

October 30, 2024

Abstract

This report presents a comprehensive analysis of a provided PCAP file, with the aim of
discovering the network’s architecture and operational dynamics. Additionally, the report
proposes a redesign of the network to establish zones of trust, enhance security measures,
and configure zone-policy firewalls, substantiated by findings from the packet analysis.

Contents
1 Introduction

2 Network Discovery

2.1 Data Collection Period
2.2 IPV4 Addresses
2.3 Networking Devices and VLANs
2.4 Servers and Services e
2.5 Network Topology
2.6 Cisco Packet Tracer Simulation

3 Zones of Trust

3.1 Security Measures
3.2 Zome policy firewall
3.3 Zone-Policy Firewall Configuration
3.4 Connectivity Verification L o

4 Conclusion

23
23
24
24
27

28

1 Introduction

Packet capture files can be used in order to map the topology of networks, this can allow
cyber security professionals to gain an insight into the operating, performance and security of
a network. By examining the networks packets I will gain insight into what improvements can
be made in order to maintain the networks ongoing security and optimisation.

2 Network Discovery

2.1 Data Collection Period

Firstly, in order find the date and time at which the packets where sent I uploaded the packet
capture file into the Wireshark software. This allowed me too inspect the first and the last
packet sent and as a result I concurred that all packets had been captured between 21.10.2015
and 22.10.2015. Furthermore, the time they were captured ranged between 11:10 pm and 2:17
pm the next day this can be seen below:

Frame 1: 153 bytes on wire (1224 bits), 153 bytes captured (1224 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Oct 21, 2815 23:18:34.9952788008 GMT Summer Time

Figure 1: First frame time stamp

Frame 2274742: 126 bytes on wire (1888 bits), 126 bytes captured (1888 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Oct 22, 2815 14:17:36.825919886 GMT Summer Time

Figure 2: Last frame time stamp

2.2 IPV4 Addresses

I then moved onto finding all IPV4 addresses of host devices on the network. Moreover, 1
separated them into public and private IPV4 addresses allowing me to figure out the devices
within the network. I also sorted all active devices into subnets and calculated there subnet
mask the results can be seen below:

Public IPV4 Addresses

8.8.8.8
17.110.230.30
17.130.137.75
17.253.54.251
52.4.151.114
04.210.217.83
74.125.205.188
83.140.27.11
93.158.110.200
108.160.163.110
173.252.90.4
192.195.142.14
193.209.237.4
199.16.156.70
199.16.156.198

17.110.224.213
17.130.137.73
17.253.34.253
21.2.2.2
52.5.95.205
54.241.179.26
77.245.33.76
93.158.94.210
93.158.110.218
141.82.217.52
192.195.142.13
193.182.190.178
199.16.156.48
199.16.156.72
199.16.156.231

Table 1: List of Public IPV4 Addresses

Private IPV4 Addresses

10.10.10.10
10.100.152.15
10.100.158.185
10.100.159.207
10.100.159.247
192.168.0.3
192.168.1.71
192.168.2.44
192.168.2.133
192.168.57.2
192.168.88.15
192.168.88.49
192.168.88.53
192.168.88.61
192.168.88.95
192.168.88.130
192.168.143.1

10.10.10.20
10.100.152.119
10.100.159.27
10.100.159.218
10.100.159.253
192.168.1.2
192.168.1.79
192.168.2.53
192.168.2.137
192.168.57.3
192.168.88.20
192.168.88.50
192.168.88.54
192.168.88.75
192.168.88.100
192.168.88.254
192.168.143.155

10.10.10.30
10.100.152.128
10.100.159.125
10.100.159.227
10.218.104.244
192.168.1.10
192.168.2.21
192.168.2.64
192.168.2.166
192.168.88.1
192.168.88.25
192.168.88.51
192.168.88.55
192.168.88.80
192.168.88.105
192.168.89.1
192.168.143.254

10.100.152.10
10.100.158.168
10.100.159.151
10.100.159.228
172.16.184.40
192.168.1.68
192.168.2.22
192.168.2.110
192.168.2.199
192.168.88.2
192.168.88.30
192.168.88.52
192.168.88.60
192.168.88.85
192.168.88.115
192.168.89.2

Table 2: List of Private IPV4 Addresses

Subnet Subnet Mask Broadcast Address
10.10.10.0/27 255.255.255.224 10.10.10.31
10.100.152.0/24 255.255.255.0 10.100.152.255
192.168.1.10/30 255.255.255.240 192.168.1.12
192.168.2.0/24 255.255.255.0 192.168.2.255
192.168.88.0/23 255.255.255.0 192.168.88.255

Table 3: All active subnets in the network

2.3 Networking Devices and VLANs

After discovering all endpoints on the network I then moved onto looking for networking de-
vices and VLANs within the network. Firstly, I searched for routing protocol packets as this
would allow me too easily identify routers within the network however, no routing packets were
displayed in Wireshark this can be seen below:

| | ospf or eigrp or bgp or isis or rip or igmp or pim

Mo, Time Source Destinaticn Protocol Length Info

Figure 3: Routing packets in Wireshark

This suggests that static routing is used instead as this doesn’t generate routing traffic like
dynamic routing protocols do. In order to find networking devices I instead have to inspect the
traffic flows to and from individual endpoints. Routing devices are devices that route packets
between different networks they can be differentiated from traditional endpoints by analyzing
the conversations that take place between the networks this can be seen below:

Address & Address B Packets Bytes Total Packets Percent Filtered
17.110.230.30 10.100.158.185 g8 3kB 8 100.00%

Figure 4: Packets routed between different Networks in Wireshark

While this does show me routing, I had to filter the captured packets and look for ones that
were transmitted between different networks this allowed me to locate the MAC address of the
router and its corresponding IPV4 address. This can be seen below:

[Jtip.sre == 17.110.230.30 &6 ip.dst == 10.100.158.185) | (ip.src == 10.100.158.185 &bt ip.dst == 17.110.230.30)

No. Time Source Destination Protocol Length Frame
2235.. 53576.176775 17.110.238.30 16.188.158.185 TLSvl 316

37.. 53696.911135 118.238.38 . TLSvl

Frame 2235575: 316 bytes on wire (2528 bits), 316 bytes captured (2528 bits)
v Ethernet II, Src: a2:74:01:00:01:d6 (22:T4:01:00:01:d6), Dst: Apple 78:96:ef (28:c0
Destination: Apple 78:96:ef (28:c9:d@:78:96:ef)
Source: a2:T4:81:00:01:d6 (a2:f4:01:00:01:d6)

Figure 5: MAC address of a router

The source MAC address is the MAC address of the router that sits between the subnet
10.100.152.0/24 and the external internet (shown by the public nature of the IPV4 source), it
has a corresponding IPV4 address of 10.100.152.1. This can be seen below:

2234.. 53492.5508985 InnominateSe_@4:f3:. a2:f4:01:80:01:d6 ARP 68 whe has 1€.180.152.1? Tell 1@.180.152.128
2234.. 53492.553627 a32:74:01:80:01:d6 InnominateSe_@4:f3:.. ARP 68 19.108.152.1 is at a2:f4:01:00:01:d6

Figure 6: ARP response from router confirming IPV4 address of 10.100.152.1

In order to find the second router I looked through another conversation between differ-
ent networks and I came across two more devices that were communicating between subnets
192.168.2.0/24 and 192.168.88.0/23 these can be seen below:

192,168.2.137 192.168.88.52 4 296 bytes
192.168.2.137 192.168.88.60 93,504 8MB
192.168.2.137 192.168.88.61 4790 390 kB
192,168.2.137 192.168.88.75 6,340 515kB
192.168.2.137 192.168.88.20 12 838 bytes

Figure 7: Packets travelling between different networks

After filtering the captured packets for ones moving between the two subnets I then moved
onto inspecting the source address of the packets. This highlighted the mac address of the
router as 00:07:7c:1a:61:83 as seen below:

‘ eth.src == 00:07:7c: 1a:61:83

Source Destination
19 .137 192.1

2261.. 54@847.468035 192.168.2.137 192.168.88.95

2261.. 54848.239877 192.168.88.1 192.168.88.61
2261.. 54850.239988 192.168.88.1 192.168.88.61
2261.. 54852.228095 WestermoNetw_la:61:.. HirschmannAu_bS
2261.. 54852.247261 192.168.88.1 192.168.88.61
27R1__ RARSA 248279 1497 1RR _RR_1 1972 _1RR_RR A1

Frame 2261872: 6@ bytes on wire (48@ bits), 6@ bytes capt
Ethernet II, Src: WestermoNetw la:61:83 (@@:87:7c:la:6l:f
V¥ Destination: HirschmannAu_b5:b6:bb (@@:88:63:b5:b6:bb)
Address: HirschmannAu_b5:b6:bb (2@:808:63:b5:b6:bb)
vees B Liie wiis waes wa.. = LG bit: Globally un
....... B ..uv winn wwvs w... = IG bit: Individual
¥ Source: WestermoNetw la:61:83 (@8:87:7c:1a:61:83)

Figure 8: Packets travelling between subnets going through the MAC address 00:07:7c:1a:61:83

In order to find the IPV4 address of the router using the mac address I then moved onto
inspecting the ARP packets from this mac address. This allowed me to locate an ARP packet
which displayed the associated IPV4 address of the router as being 192.168.88.1.

784 88.277177 WestermoNetw_la:61:.. CIMSYS 7b:c5:58 ARP 68 v 192.168.88.1 is at @0:87:7c:1a:61:83

Figure 9: ARP response from router confirming IPV4 address of 192.168.88.1

In order to locate the third router within the network I used the same method of analysing
traffic between networks and locating devices routing packets between them this can be seen
below:

Address A Address B Packets Bytes
10.10.10.30 172.16.184.40 8 6kB

Figure 10: Conversation between subnet 10.10.10.0/27 and 192.168.1.10/32

After locating a conversation I then found the mac address of the intermediary device which
was 04:18:d6:83:db:16.

[Jip.src == 10.10.10.10 and ip.dst == 192.168.1.10

M. Time Source Destination
126@.. 41269.845747 16.10.16.18 192.168.1.18
1266.. 41269.152961 16.16.16.18 192.168.1.18
126@.. 41269.283232 16.10.16.18 192.168.1.18

Frame 126@8389: 76 bytes on wire (688 bits), 76 bytes c
¥ Ethernet II, Src: Siemens_89:59:82 (28:63:36:89:59:82)
v Destination: Ubiquiti 83:db:16 (B4:18:d6:83:db:16)

Figure 11: Mac address of the router

I then used ARP packets destined for this MAC address to find its associated IPV4 address
of 10.10.10.1 this can be seen below:

786L. 37763.415783 WistronInfol_3f:4a:.. Ubiquiti 83:db:16 ARP 68 v Who has 18.1@.18.17 Tell 10.18.18.3@
1260.. 41269.0848316 Ubiquiti 83:db:16 Siemens_89:59:82 ARP 68 ¢ 18.1@.18.1 is at @4:18:d6:83:db:16

Figure 12: ARP response from router confirming IPV4 address of 10.10.10.1

After locating all routers within the network I then moved onto looking for VLAN’s within
the network this can be done through filtering the packets using the VLAN tag which displays
any IEEE 802.1Q tagged packets. Using this method it was clear that there were no VLAN’s
were active within the network as no packets with this tag were displayed as seen below:

|.|q |1.rlar1

Mo, Time Source Destination Protocol Length Frame Info

Figure 13: No packets displayed with the VLAN tag

10

2.4 Servers and Services

After identifying the Networking devices I then moved onto locating servers and services that
were running within the network. I first used the Wireshark tool to locate a DHCP server at

10.100.152.10:

(A]dhep
Mo. Time Source Destination Protocol Length Frame Info
~ 22309.. 53896.578096 10.100.152.10 18.180.152.128 pHeP | 3R & DHCP Offer - Transaction ID @x7e82fa7d

Figure 14: DHCP offer from 10.100.152.10

I then moved onto locating web servers on the network by using the WireShark filter
http.response which locates all successful HT'TP response packets sent from the web servers
(Address B) to the client (Address A). By then using the conversations tab I was able to locate
a number of web servers as seen below:

N | hitp.response.code == 200

Figure 15: Filter for successful HT'TP response packets

Address A Address B Packets Bytes

192.168.2.137 192.168.858.20 10 1 kB
192.168.2.22 192.168.88.49 9 T kB
192.168.2.199 192.168.88.51 15 18 kB
192.168.2.21 192.168.23.60 73 37 kB
192.168.2.199 192.168.83.61 2 2 kB
192,168.2.137 192.168.88.100 2 120 bytes
192.168.2.22 192.168.88.115 21 12 kB

Figure 16: All IPV4’s serving HTTP responses

11

However, this does not include HTTPS response packets as these are encrypted in order to
locate these devices I instead used a filter that looks for packets with a port source of 443 as
seen below:

| | tep.sreport == 443 & & tep.flags.syn == 1 && tepflags.ack ==

Figure 17: Filter for successful HT'TPs response packets

Address A Address B Packets Bytes
192.168.2.22 192.168.88.61 34 2 kB
192.168.2.22 192.168.88.75 58 4 kB
192.168.2.22 192.168.88.95 69 4 kB
192.168.2.22 192.168.88.115 44 3 kB
192.168.2.53 192.168.88.51 193 15 kB
192,168,253 192.168.88.60 77 & kB

Figure 18: Filter for successful HT'TPs response packets

After filtering traffic correctly I discovered all IPV4 addresses sending HTTP and HTTPS
responses as expected there is a large amount of overlap between them. Below is the list of
endpoints ordered by the protocols they use:

Both HTTP and HTTPS

Only HTTP

Only HTTPS

192.168.88.51

192.168.88.20

192.168.88.75

192.168.88.60

192.168.88.49

192.168.88.95

192.168.88.61
192.168.88.115

192.168.88.100

However, these devices may not all be functioning as web servers In order to find if they
were primarily web servers I used the NetworkMiner tool to check if the devices had a web
server banner as seen below:

Devices Contains web server banner Web server software
192.168.88.51 Yes Microsoft-WinCE/5.0
192.168.88.60 Yes GoAhead-Webs
192.168.88.61 Yes GoAhead-Webs
192.168.88.115 Yes GoAhead-Webs
192.168.88.95 Yes GoAhead-Webs
192.168.88.20 Yes NET+ARM Web Server/1.00
192.168.88.49 No N/A
192.168.88.100 No N/A
192.168.88.75 No N/A

12

This suggests that only some of the devices serving http and https responses are serving as
web servers and the others serve a different purpose. After completing this I then moved onto to
looking at devices involved in ICS (Industrial control systems) which seem to play a prominent
role in the system. This was done through the use of WireShark by filtering traffic for port 102
which plays a key role in monitoring and controlling ICS as seen below:

Address A Address B Packets Bytes Total Packets Percent Filtered

192.168.1.10 10.10.10.10 96 TkB 96 100.00%
10.10.10.30 10.10.10.10 43,135 3 MB 43,135 100.00%
10101020 10.10.10.10 326,305 34 MB 326,505 100.00%

Figure 19: Filter for traffic on port 102

This highlights that the main ICS seems to be located within the 10.10.10.0/27 subnet
furthermore, on deeper inspection it seems that the device with the IPV4 10.10.10.10 is the
primary ICS device while 10.10.10.30 is used to control the device and 10.10.10.20 is used to
monitor the device this can be seen below:

N | ip.dst == 10.10.10.10 && ip.src == 10.10.10.20 && s7comm

MNao. Time Source Destination Protocol Length Frame Info
1 @.8ea080 18.16.16.28 18.18.16.18 S7C0MM 153 v ROSCTR: [Job] Function:[Read Var]
12 @.999852 18.16.16.28 18.18.16.18 S7C0MM 153 v ROSCTR: [Job] Function:[Read Var]
28 1.999962 18.16.16.28 18.18.16.18 S7C0MM 153 v ROSCTR: [Job] Function:[Read Var]

Figure 20: Traffic from 10.10.10.20 monitoring 10.10.10.10 using Read Var command

[A Jip.dst == 10.10.10.10 && ip.src == 10.10.10.30 B8 s7comm

Ma. Time Source Destination Protocol Length Frame Info
1262.. 41569.8083188 16.18.18.38 18.168.18.18 S7COMM 94 ROSCTR: [Job] Function:[Write Var]
1262.. 41524.186632 10.18.160.38 18.1e.16.18 S7COMM 94 ROSCTR: [Job] Function:[Write Var]
1276.. 42824.883137 160.18.18.30 16.108.10.18 S7CoMM 94 v ROSCTR: [Job] Function:[Write Var]

Figure 21: Traffic from 10.10.10.30 controlling 10.10.10.10 using Write Var command

13

After locating the ICS devices I then looked for FTP servers by filtering for FTP packets
in WireShark this displayed two devices that were serving FTP responses 192.168.88.49 and
192.168.88.25. This can be seen below:

|ﬂ |ftp

No. Time Source Destination Protocol Length Frame Info
2752.. 32911.978268 192.168.88.49 192.168.2.137 FTP 121 Response:
2752.. 32911.982187 192.168.88.49 192.168.2.137 FTP 80 » Response:

Figure 22: FTP response from 192.168.88.49

(A [#tp

No. Time Source Destination Protocol Length Frame Info
4854.. 35187.935876 192.168.88.25 192.168.2.166 FTP 138 « Response:

| 4296.. 35284.478859 192.168.88.25 192.168.2.166 FTP 138 v Response:

Figure 23: FTP response from 192.168.88.25

Additionally I identified two devices running SNMP (Simple Network Management Protocol)
with IPV4’s 192.168.2.22 (SNMP manager) and 192.168.88.30 (SNMP agent) as seen below:

|l |udp.port == 161

Mo. Time Source Destination Protocol Length Frame Info
1724.. 46577.148644 192.168.2.22 192.168.88.30 SNMP 85 v get-next-request
1724.. 46577.162572 192.168.88.308 192.168.2.22 SNMP 86 v get-response 1.3,

Figure 24: SNMP connection between 192.168.88.30 and 192.168.2.22

Finally, I identified a firewall operating between the subnets 192.168.88.0/23 and 192.168.2.0/24
with the IPV4 address 192.168.88.75 this was done through the use of the NetworkMiner tool
which identified the device as a EAGLE20 Tofino which acts as a firewall. This can be seen
below:

BCL 152.168.88.75 (ICS_device)

b IP: 192 168.88.75

.l MAC: 003063B5E6ER

il NIC Vendor: Hirschmann Automation and Control GmbH
... MAC Age: 1998-04-22

----- Hostname:

=L, 0S: ICS_device

PoEe Satori TCP: ICS device - EAGLE20 Tofino (100.00%)

Figure 25: Network miner confirming the device is a EAGLE20 Tofino

14

2.5 Network Topology

After locating all services and servers on the network I then moved onto designing a network
topology that matched the reconnaissance I have completed so far. This involved defining all
the subnets with all the services I located within each subnet as seen below:

192.168.88.0/23

—
=a [2 x FTP servers
) 5 x Web servers

x SNMP

z —
1 x Firewall |
7 =" agent

—

Internal
network

10.10.10.0/27

Industrial u

control systems

I

v
4“@192 166.88.1

?

@10.10.101
-

I

192.168.1.10/32

v
ﬂl{llﬂﬂ 152.1

10.100.152.0/24

=1
1x DHCP server
.

192.168.2.0/24

External
internet

Figure 26: Subnet layout

This proposed layout is evidenced by the devices within the subnet 192.168.2.0/24 not having
visible mac addresses. Furthermore, when analyzing the distance variable within NetworkMiner
it is clear that packets destined for the 192.168.2.0/24 subnet have to complete a number of
hops across the internet in order to reach there desired IP address. This suggests that the
192.168.2.0/24 subnet may be serving as a demilitarized zone that allows for connections from
the wider internet. This is further evidenced by the OS on some devices in this network detecting
NMAP scans. All evidence for my claims can be seen below:

15

=148 192.168.2.21

b IP:192.168.2 21
=l MAC: DD077C1A6183
----- 1592.168.2.166 (zame MAC address)
----- 1592.168.2.195 (zame MAC address)
----- 1592.168.2.22 (same MAC address)
----- 1592.168.2.133 (zame MAC address)
----- 152.168.2.110 (zame MAC address)
----- 152.168.2.64 (same MAC address)
----- 152.168.2.53 (same MAC address)
----- 152.168.2 44 (same MAC address)
----- 152.168.2.137 (same MAC address)

Figure 27: NetworkMiner cant detect mac addresses of devices in 192.168.2.0/24 subnet

-8 192.168.2.199 (Other)

----- IP: 192168 2159
-l MAC: 00077C1A6183
----- i NIC Vendor: Westermo
----- R MAC Age: 2001-10-24
----- Hostname:

[+ 05: Other

----- TTL: 41 (distance: 23)

Figure 28: The high distance value of 23 suggests the network is externally located

El-g:l 132.168.2.22 (Other)
b IP:192.168.2.22
-l MAC: 00077C1A6183
----- il NIC Vendor: Westermo MNetwork Technologies AB

- MAC Age: 2001-10-24
e Hostname:
B~ O5:Other

- pOf (NetSA): “NMAP syn scan (5) ["NMAP] (39.91%) "NMAP 05 detection probe (12) ["TNMAP] (0.03%)

Figure 29: The device has detected a NMAP scan

16

2.6 Cisco Packet Tracer Simulation

After discovering and outlining the proposed network topology I created the network topology
within Cisco packet tracer. I began placing all key devices including servers, routers, firewalls
and a device for each subnet within the network this can be seen below:

10 WPE-‘\PJW PeFT
192.168.1.10

-

witch-PT 3
PC-PT
152 168.1.10430 10.100.152 11

10.10.10.30 “—)_’Z.,

Server-PT
DHCP server

Switch-PT
201 10.100.152.0/24

Server-PT
Zx FTP server

Server-PT
Sx Web server

Server-PT
External Server
A0
PC-PT
SNMP Agent

E
PC-PFT
SNMP Manager

Figure 30: Network topology in Cisco packet tracer

17

I then moved onto assigning the correct IPV4’s to all router interfaces within the network
based of the captured packets. This can be seen below:

BEouterrenakle

BEoutergconfigure terminal

Enter configuration commands, one per line. End with CHTIL/Z.
Bouter (config) #interface Gigl/sO

Bouter (config-if) #ip address 152 _ 1&2_883_.1 255_255_255.0
Bouter (config-if) #no shutdown

Bouter (config-if) #end

Figure 31: Assigning IPV4 to 192.168.88.1 Gig0/0 Router interface

Bouter=enakle

Boutergconfigure terminal

Enter configuration commands, one per line. End with CHILSZ.
Bouter (config) ginterface igld/sO

Bouter (config-if)#ip address 10.100.152_.1 255_255_255.0

Bouter (config-if) #no shutdown
Router{config—1if) fend

Figure 32: Assigning IPV4 to 10.100.152.1 Gig0/0 Router interface

Bouterrenakle

Boutergconfigure terminal

Enter configuration commands, one per line. End with CHTIL/SZ.
Bouter (config) ginterface Giglso

Bouter (config-if) §ip address 10_.10.10.1 255_25
Bouter (config-if) #no shutdown

Bouter (config-if) §end

.255.0

wn

Figure 33: Assigning IPV4 to 10.10.10.1 Gig0/0 Router interface

Bouter (config) #interface GigabitEthernetl/1
Bouter {config-if)dno ip address

Bouter {config-if)f#ip address 15%2.1€8.1.1 255. .0

(W}

5

[0

55.

[0

Figure 34: Assigning IPV4 to 10.10.10.1 Gig0/1 Router interface

18

After correctly assigning IPV4’s to each router interface I moved onto configuring the DHCP
server in subnet 10.100.152.0/24 which assigns IPV4 addresses to every device within this sub-
net.

IP Configuration

() DHCP (®) Static

IPv4 Address [10.100.152.10 |
Subnet Mask |255.255.255.0 |
Default Gateway [10.100.152.1 |
DNS Server lsaas |

Figure 35: Configuring DHCP server IPV4 address

DHCP
Interface FastEthernetd | Service (@ On (O off

Pool Name 10.100.152.0/24 |
Default Gateway 10.100.152.1 |
DNS Server |8.8.8.3 |
Start P Address © |10 | |100 | [152 | |11 |
Subnet Mask: |255 | |255 | |255 o |
Maximum Number of Users : |245 |
TFTP Server: 0.0.0.0 |
WLC Address: 0.0.0.0 |

Figure 36: Configuring DHCP server pool

IP Configuration

(®) DHCP

() Static

IPv4 Address 10.100.152.3
Subnet Mask 255.255.250.

Figure 37: IPV4’s successfully assigned to devices within the subnet

19

For devices located outside this subnet I instead manually assigned them the appropriate
IPV4 address as seen below:

IP Configuration

i) DHCP

(®) Static

IPv4 Address 100101010
Subnet Mask 255 255 755224

Figure 38: Assigning IP address to 10.10.10.10

IP Configuration

{C) DHCP

(@) Static

IPv4 Address 10.10.10.20
Subnet Mask 255,255 255 224

Figure 39: Assigning IP address to 10.10.10.20

IP Configuration

() DHCP

(@ Static

IPv4 Address 10.10.10.30
Subnet Mask 255 255 255 224

Figure 40: Assigning IP address to 10.10.10.30

IP Configuration

() DHCP
(@) Static
IPvé4 Address 192.168.2.22
Subnet Mask 255255 255.0

Figure 41: Assigning IP address to 192.168.2.22

IP Configuration

() DHCP
® Static
IPvd Address 152.168.88.30
Subnet Mask 255.255.255.0
Figure 42: Assigning IP address to 192.168.88.30
IP Canfiguration
) DHCP
(®) Static
IPv4 Address 192.168.1.10
Subnet Mask 255,255 255 252

Figure 43: Assigning IP address to 192.168.1.10

20

Finally in order to complete the network topology I configured static routing between the
different subnets this method was chosen as I could not find any OSPF or other routing protocol
packets. This can be seen below:

Routerrenakble

Routerfconfig terminal

Enter configuration commands, one per line. End with CNTI
Router (config) #ip route 10.100.152.1 Z55.255.255.0 Gigds0O
gDefault route without gateway, if not a point-to-point ir
fTnconsistent address and mask

Router (config) gend

Routerfwrite memory

Figure 44: Routing Configuration for 10.100.152.1

Routertenakle

Routerfconfig terminal

Enter configuration commands, one per line. End with CHNT.
Bouter (config) #ip route 152 _1€8.88_0 255_255_255.0 Gigl/s0
(Default route without gateway, if not a point-to-point in
Router (config) gend

Routerfwrite memory

Figure 45: Routing Configuration for 192.168.88.1

Router (config-if)#ip route 1%2_.1€2.1.10 2Z55.255.255.252 Gigld,s2
(Default route without gateway, if not a point-to-point interfa
#Inconsistent address and mask

Router (config) #ip route 10.10.10.0 255.255.255.224 Gigldys0

Figure 46: Routing Configuration for 192.168.88.1

21

I then configured the serial interfaces and the routing for each individual subnet on each of
the routers they connected to. In order to ensure it was working properly I pinged between the
different subnet’s to ensure connectivity this can be seen below:

C-\>ping 192.168_.1_10

Pinging 152 .1c8

2}
e

T
L
o

%3
L]
1 ct o §
m o mm

w
m m m
L+]
| Sl el el
w i uwh un
3 3 B3 [
o :
]
of

L »
e
o

Figure 47: Pinging 192.168.1.10/30 subnet from 10.100.152.0/24 subnet

C:hwsping 10.10.10.1
Pinging 10.10.10.1 with 32

from 10.10.10.1:
from 10_.10_10_1:
from 10.10.10.1:
from 10.10.10.1:

Figure 48: Pinging 10.10.10.1/27 subnet from 192.168.88.0/24 subnet

C:\>ping 10.100.152_.1

Pinging 10.100.152_.1 with 322 bytes of data:
gquest timed out.

Hep from 10.100_.152_ time<lms TTL—=255

om 10.
10.

from

ol

from

from

s}

e
e
e
=

5]

from

it

=1
ot

G

time<lms TT
time=11lms TT

time=13ms TTIL~127

time=10ms TTL~=127

time s TTL=127
ime<lms TTL=127

Figure 50: Pinging 192.168.2.0/24 subnet from 192.168.88.1/24 subnet

22

3 Zones of Trust

3.1 Security Measures

After discovering the topology and creating the network I then moved onto improving the
security of the network this involved first giving all routers unique hostnames and enabling
passwords in order to prevent unauthorized access. This can be seen below:

Router (config) fhostname 10_.100_152_1
10.100.152 _ 1{config) §enakle secret PasiiwlrdlZ3
10.100_.152 .1 {configl#line console O
10.100_.152 .1 {(config-line) fpassword PafiwlrdlZz
10.100.152 1{config-line) #login
10.100.152 .1 {config-line) fexit

Figure 51: Enabling passwords on Routers

After this I moved onto enabling SSH (Secure Shell protocol) on each of the routers to allow
for easier changes to router configuration remotely this can be seen below:

13.100.152 1 {config) $#ip domain-name network.com

13.100.152 1 {config) gcrypto key generate rsa

The name for the keys will kbe: 10.100.152.1 _.network.com

Choose the size of the key modulus in the range of 360 to 40%¢ for your
Feneral Purpose Eeys. Choosing a key modulus greater than 512 may take
a few minutes.

How many kits in the modulus [512]: 20482
% Fenerating 2048 kit RSA keys, keys will ke non—exportakble. . | [QE]

10.100.152 .1 {config) fusername admin password P4iiword
‘*Mar 1 2:59:23.282: %55H-5-EWMRBLED: 55H 2 has been enabled

13.100.152 1 (config)#ip ssh wersion 2
10.100.152 .1 {config)#ip ssh authentication-retries 3
10.100.152 . l{configl#line wty 0 4
13.100.152 .1 (config-line) #login local
10.100.152 . 1{config-line) §transport input ssh
103.100.152 1 {config-line) fend

Figure 52: Enabling SSH on Routers

In order to test whether this was working as intended I connected to the 192.168.88.1 router
as seen below:

Wrs5h -1 admin 1%2_1c8

Figure 53: Testing SSH on Routers

23

3.2 Zone policy firewall

When creating the Zone policy firewall I decided to create three different zones one for the
LAN, one for the DMZ and one for the WAN. This system of zoning will help protect the
internal network from external threats by blocking incoming unauthorized traffic. Additionally
the 192.168.2.0/24 will act as a buffer between the WAN and the LAN and flag any suspicious
traffic.

3.3 Zone-Policy Firewall Configuration

In order to begin creating the ZPF configuration I created three zones DMZ, WAN and LAN
as seen below:

152 . 168 .28 . lfconfigure terminal

Enter configuration commands, one per line. End with CHNTL/Z.
152 12 .82 .1 (config) #zone security LAN

152 . 1€2 .22 .1 (config-sec—zone) fzone security W&

152 . 1€2 .22 .1 (config-sec—zone) fzone security DMI

192 .18 .28 .1l {config-sec—zone) gexit

H e e

Figure 54: Defining ZPF zones

After defining the zones I then moved onto assigning the correct interface to the correct
zone this will ensure that traffic cant flow between unauthorized zone. This can be seen below:

152 .18 .22 .1 {config) finterface GFigabitEthernetd/s0
152 .18 28 .1l {config-if) fzone-member security LA&AN
152 . 168 .28 .1 (config—if) gexit

152 .18 28 . 1l{config) tinterface GFigabitEthernetl/1
152 .18 .82 .1 (config-if) $zone-member security WAN
152168 .28 .1 (config—if) gexit

152 .18 .82 .1 {config) finterface GigabitEthernetd/s2
152 . 1s8 .88 .1l {config—-if) fzone—-member security DMZ
152 .1c8 .28 .1 (config—if) gexit

152 .18 .88 .1l {config) #interface Serialdys 0,0

152 .18 .28 .1 (config-if) $zone-member security LA&N
152 . 168 .288 .1 (config-if) gexit

152 .18 .28 .1 ({config) f#interface Seriald/s0/1

152 .18 828 .1l {config-if) fzone-member security L&N
152168 .88 .1 (config-if) gexit

Figure 55: Assigning interfaces to specific zones

24

Once the correct interfaces had been assigned I then moved onto defining the zone pairs
which dictate where traffic flows too and from. This can be seen below:

152.1c28.828.1l{config) #zone-palr security DMZI to LAN source DMZ destination LREN
152.1€8.858 .1 (config-sec-zone-pair) §service-policy type inspect DMZ to LAN

152 _1¢8 .28 _1{config-sec—-=zone-pair) #

152 .1c2.828 . l{config-sec-zone-pair) §zone-pailr security LAN to DMZ source LEN destination
LMZ

152 1658 .85 .1 {config-sec—-zone-pair) #service-policy type inspect LRN to DMZ

€
192 .1c2.22 1l {config-sec—sone-pair) #

152.1€8.858 .1 (config-sec-zone-pair) §zone-pair security WAN to DMZI source WAN destination
DMZ
152.1c2.828 . 1l{config-sec-zone-pair) §service-policy type inspect WAN_to_DMZ

&
152 .1c8.22 .1l {config-sec—=zone-pair) #

152 1658 .858 .1 {config-sec-zone-pair) §zone-pair security DMZ to WAN scurce DMZ destination
WA
152.1€8.858 .1 (config-sec-zone-pair) §service-policy type inspect DMZ to WAN

L=
152 _1¢8 .28 _1{config-sec—-=zone-pair) #
152.1e28.828 .1l {config-sec-zone-palir) §zone-palr security WAN_ to LAN source WAN destination
LAN
152 . 168.88 1{config-sec—zone-pair) #service-policy type inspect WAN_ to LANW
152 .1c8.228 .1 (config-sec—-zone-pair) §
1532.1€8.858 .1 (config-sec-zone-pair) §zone-pair security LAN to WAN source LEN destination
WAN
152.168.88.1{ccnfig—sec—zcne—pair)Sgervice—pclicy type inspect LAN to WAN

Figure 56: Defining zone pairs

With this step completed I was then able to create class maps which allow certain types of
traffic between the devices within the networks. I restricted it just to UDP, TCP and ICMP
however, this can easily be expanded to accommodate more protocols. This can be seen below:

152 18 .88 lfconfigure terminal

Enter configuration commands, one per line. End with CHNTL/Z.
1a2.le2.288.l{config) #class-map type inspect match-any ALL TRAFFIC
152 12 .28 .1l {config-cmap)# match protocol top

152 12 .28 .1l {config-cmap)# match protocol udp

152 12 .28 .1l ({config-cmap)# match protocol icop

152 12 .28 .1 (config-cmap) fexit

Figure 57: Filtering traffic to only allow certain protocols

25

Finally, in order to complete the zone policy firewall I applied the policy maps to the zone

pairs this will ensure that traffic is properly filtered. This can be seen below:

192 .18 .88 lgconfigure terminal

Enter configuration commands,
li{config)fclass-map type inspect match-any ALL TRAFFIC

152 .
152.
152 .
152.
152
152 .
152.
152 .
152.
152
152 .
152.
152
152.
152
152 .
152.
152
152 .
152
152 .
152.
152
152 .
152
152 .
152.
152
152 .
152
152 .
152.

les
les
les
les

.les

les
les
les
les

.les

les
les

.les

lsd

.les

les
les

.les

les

.les

les
les

.les

les

.les

les
les

.les

les

.le8

les
les

.88,
.88,
.88,
.88
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,
.88,

1
1
1
1
1
1
1
1
1
1
1
1
1
1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1

one per line.

End with CHTL/Z.

l{config-cmap) #match protocol ip

1

-1

{config-cmap) fexit

{config) dpolicy-—map type
lconfig-pmap) fclass type
config-pmap—c) fpass
config-pmap—c) fexit
config-pmap) #

config-pmap) fpolicy-map
lconfig-pmap) fclass type
config-pmap—c) fpass
config-pmap—c) fexit
lconfig-pmap) #

config-pmap) fpolicy-map
lconfig-pmap) fclass type
(config-pmap—c) fpass

config-pmap—c) #exit
config-pmap) #
config-pmap) fpolicy-map
config-pmap) #class type
config-pmap—c) #pass
config-pmap—c) #exit
config-pmap) &
config-pmap) fpolicy-—map

config-pmap—c) fdrop
config-pmap—c) #exit
config-pmap) #
(config-pmap) fpolicy—-map
lconfig-pmap) dclass type
(config-pmap—c) fpass
(config-pmap-c) #exit

inspect DMZ to LA&ANW
inspect ARLL TRARFFIC

type inspect LAW to DMZI
inspect ARLL TRARFFIC

type inspect WAN to DMZI
inspect ARLL TRARFFIC

type inspect DMZ to WAN
inspect ARLL TRARFFIC

type inspect WAN to LANW

config-pmap) #class class—default

type inspect LAN to WAN
inspect ALL TRAFFIC

Figure 58: Applying policy maps to individual zone pairs

26

3.4 Connectivity Verification

In order to ensure it was working as intended I tested zone to zone transmissions by pinging
between devices in each different zone. The results can be seen below:

C:h\>ping 152 .1%

Pinging 1%2.1
from 192 _1&8 320 bytes=32 time=lms TTIL=127
from 152 .1%1 wtes=322 time=8ms TTIL=127

from 152 ._1¢H] wEes=32 time<lms TIL=127
from 152 ._1¢H : whes=32 time=2Zms TIL=127

Pinging 1%2.1c2 .2

time=5%ms TTI~=127
time<lms TTI~=127
time<lms TTIL=127
time<lms TTL=127

from 15%2.

K]
| S P T T |
| S I S I

from 15%2.

1
1
1
1

c
G
G
c

B R]

Pinging 152 _1&

timed out.
timed out.
timed out.
timed out.

Figure 61: Unsuccessful ping from external server to LAN

These tests show that the ZPF is working as intended as devices in the LAN cant commu-
nicate with devices in the WAN however, devices in the DMZ can communicate with both.

27

4 Conclusion

In conclusion, through the analysis of packets with tools such as Wireshark and NetworkMiner
I was able to enhance my understanding of the network infrastructure. This enabled me to
recreate the Network in Cisco packet tracer complete with all its services and the correct IPV4
addresses. This first stage also aided me in proposing a more secure network design which
utilized features such as Zone Policy Firewalls and SSH. The successful implementation of these
features is further highlighted by the blocked connections between zones that aren’t meant to
communicate. This report provides an in depth analysis of the network while also providing a
number of recommendations to increase its security.

28

References

1]

2]

wiki.wireshark.org. (n.d.). FrontPage - The Wireshark Wiki. [online] Available at:
https://wiki.wireshark.org.

wiki.wireshark.org. (n.d.). S7comm - The Wireshark Wiki. [online] Available at:
https://wiki.wireshark.org/S7comm.

GeeksforGeeks. (2018). Simple Network Management Protocol (SNMP) - GeeksforGeeks.
[online] Available at: https://www.geeksforgeeks.org/simple-network-management-
protocol-snmp/.

Prashant Lakhera (2017). HTTP/HTTPS Analysis Using Wireshark. [online] Medium.
Available at: https://medium.com/devops-world /http-https-analysis-using-wireshark-
cbe07¢23520.

learningnetwork.cisco.com. (n.d.). Cisco Learning Network. [online] Available at:
https://learningnetwork.cisco.com/s/question/0D53100000Ksusd CAB/zonebased-policy-
firewalls-5-step-process.

29

	Introduction
	Network Discovery
	Data Collection Period
	IPV4 Addresses
	Networking Devices and VLANs
	Servers and Services
	Network Topology
	Cisco Packet Tracer Simulation

	Zones of Trust
	Security Measures
	Zone policy firewall
	Zone-Policy Firewall Configuration
	Connectivity Verification

	Conclusion

