Implementing a Quantum Resistant Cryptosystem for
MyFinance Inc.

Stanley Shaw
April 2025

Abstract

This report details a secure cryptosystem for MyFinance Inc., an investment-portfolio platform.
Confidentiality, integrity, and authenticity are enforced with AES-256-GCM, HKDF-derived keys,
and Argon2 password hashing, while MLKEM-1024 provides post-quantum key exchange and rota-
tion. Built on Django, the system combines role-based access control, HTTPS, audit logging, and
end-to-end-encrypted user messaging. Unit and integration tests confirm the correctness of encryp-
tion, transaction security, and permission handling. Diagrams highlight that the solution is scalable,
GDPR-compliant, and fit for modern financial workloads. Future work includes adding multifactor
authentication and improving key lifecycle automation to enhance long-term resilience.

Contents
1 Introduction

2 Design Justification
2.1 Functional Requirements
2.2 Non-Functional Requirements L L
2.3 Encryption and Hashing Algorithms
2.4 Key Management and Post-Quantum Cryptography
2.5 User Authentication and Access Control
2.6 Data Integrity and Secure Communication 0L
2.7 System Diagrams L e

3 Implementation Details
3.1 Key Management
3.2 AES Encryption and Decryption
3.3 Password Hashing e
3.4 Secure Communication and Audit Logging
3.5 Integration with Django and Interface Creation

4 Security Analysis
4.1 Replay Attacks o e
4.2 Man-in-the-Middle (MitM) Attacks L
4.3 Harvest-Now, Decrypt-Later Attacks (Post-Quantum Threats)
4.4 Data Breaches and Unauthorised Data Access
4.5 Brute Force and Credential Attacks L o o
4.6 Tampering and Integrity Violations Lo oo
4.7 Key Compromise and Key Management Weaknesses
4.8 Privilege Escalation Lo
4.9 Insider Threats and Auditability L L
4.10 Message Interception and Spoofing L L
4.11 Denial-of-Service and Abuse

5 Testing and Evaluation
5.1 Unit Testing e e e
5.2 Integration Testing L e

6 Conclusion

14
14
15
22
23
26

53
53
53
54
o4
95
95
56
56
o7
o7
58

59
99
64

71

1 Introduction

MyFinance Inc.’s cryptosystem is designed to secure sensitive financial data and transactions by ensuring
confidentiality, integrity, and authenticity. It employs a quantum-resistant lattice-based key encapsula-
tion mechanism (MLKEM1024) to generate a shared secret key, which is then processed using HKDF to
derive a robust symmetric key for AES-GCM encryption. The system further protects user credentials
with a custom Argon2 hasher and guarantees data integrity through the built-in authentication tags of
AES-GCM. Additional features such as secure HTTPS communication, role-based access control, key
rotation, and audit logging together constitute a robust security framework for managing investment

portfolios.

2 Design Justification

The design of the cryptosystem is built on industry best practices to address current cybersecurity

threats and emerging quantum risks.

It protects sensitive financial data from sophisticated attacks

and unauthorised access by incorporating advanced, quantum-resistant algorithms, ensuring long-term
confidentiality, robust security, and compliance with regulatory frameworks such as GDPR and the Data
Protection Act (DPA) [Anderson, 2020, Mosca, 2018, European Union, 2018].

2.1 Functional Requirements

Functional requirements define the specific operations and capabilities the system must support to meet
user needs. They ensure clear outlining of required functionalities across user roles.

User Role

Functional Requirements

Client

Register and Log In: Clients are able to register and authenticate securely
using robust authentication mechanisms [OWASP, 2025¢, Django, 2023].

Access Account Details: Clients view their encrypted account details and
transaction history securely [PyCA, 2023].

Initiate Investment Transactions: Clients initiate investment transactions,
with all transaction data encrypted for security [NIST, 2001, Dworkin, 2007].

Modify Personal Information: Clients update personal details (e.g., contact
information) with encryption ensuring data confidentiality [Rescorla, 2018].

Financial
Advisor

Secure Login: Financial advisors log in using secure authentication mecha-
nisms [OWASP, 2025¢, Django, 2023].

View and Analyse Client Portfolios: Advisors view and analyse client
portfolios, with all portfolio data securely encrypted [NIST, 2001, PyCA, 2023].

Perform Client Transactions: Advisors execute investment transactions
on behalf of clients, ensuring that the data is encrypted during transmission
[Dworkin, 2007].

Send Encrypted Communication: Advisors send encrypted communica-
tions, such as investment recommendations, to clients [Rescorla, 2018].

System
Admin

Manage User Accounts: Administrators create and manage user accounts
for clients and financial advisors [Django, 2023].

Monitor and Audit Logs: Administrators monitor and audit system logs for
any suspicious activities [Scarfone and Souppaya, 2006].

Oversee Key Management: Administrators control the key management
system to ensure secure generation and storage of cryptographic keys [Barker,
2020, NIST, 2024].

Table 1: Functional Requirements for the Cryptosystem

2.2 Non-Functional Requirements

Non-functional requirements define the quality attributes and operational constraints that the cryptosys-
tem must meet to ensure performance, security, and reliability.

Non- Description

Functional

Requirement

Encryption The system employs robust encryption techniques to secure client data and trans-

Methods action details. It combines quantum-resistant and classical algorithms to ensure
confidentiality against evolving threats [NIST, 2001, Dworkin, 2007, NIST, 2024].

Secure Secure communication channels are used to protect all data exchanged between

Communication | MyFinance Inc. and its clients. Encryption is applied to data in transit, ensuring
both confidentiality and integrity during transmission [Rescorla, 2018, OWASP,
2025b].

Key A secure key management system is in place for generating, distributing, and stor-

Management ing cryptographic keys. The design supports key rotation and advanced key pro-

System tection measures, with further enhancements planned for future iterations [Barker,
2020, NIST, 2024].

User A strong authentication mechanism is implemented to verify user identities. This

Authentication includes secure password hashing and session management, ensuring that only
authorised users can access sensitive functionalities [Biryukov et al., 2016, OWASP,
2025¢].

Data Integrity Measures are established to ensure the integrity of transaction data and prevent
unauthorised modifications. Audit logging and encrypted transaction records help
maintain the accuracy and reliability of financial data [NIST, 2015, OWASP,
2025a].

Table 2: Expanded Non-Functional Requirements for the Cryptosystem

2.3 Encryption and Hashing Algorithms

In order to align with both the functional and non-functional requirements, a range of encryption and
hashing techniques that adhere closely to industry standards and best practices have been utilised.

Algorithm Justification Suitability for Investment
Platform
AES-256 Symmetric encryption with a 256-bit Essential for protecting sensitive

key, providing extensive key space and
resistance to brute-force attacks
[NIST, 2001].

financial information from
unauthorised access [Dworkin, 2007].

Galois/ Counter

Authenticated encryption combining

Ensures financial data remains

Mode (GCM) confidentiality with integrity assurance | unaltered and confidential during
via authentication tags [Dworkin, transmission [Rescorla, 2018].
2007].
HKDF Derives secure, high-entropy Guarantees secure, robust keys crucial
cryptographic keys through extraction | for managing sensitive client data
and expansion processes [Krawczyk [PyCA, 2023].
and Eronen, 2010].
SHA-256 Produces 256-bit hashes that are Critical in financial applications where
resistant to collisions, ensuring data data integrity is paramount to prevent
integrity [NIST, 2015]. fraud [Scarfone and Souppaya, 2006].
Argon2 Password hashing with adjustable Secures client authentication

complexity parameters to protect
against brute-force attacks [Biryukov
et al., 2016].

credentials effectively, preventing
unauthorised access [OWASP, 2025¢]|.

Table 3: Encryption and Hashing Algorithms Justification

2.4 Key Management and Post-Quantum Cryptography

To support both security objectives and operational needs, a range of key management methods —
including a quantum-resistant cryptographic approach — have been selected. These methods conform to
current cryptographic standards and future-facing security models.

Component Detailed Description and Justification Suitability for
Investment
Platform

MLKEM-1024 MLKEM-1024 is a lattice-based post-quantum key Provides robust
encapsulation mechanism that relies on the hardness of | encryption that
the Module Learning With Errors (MLWE) problem. protects against
It provides IND-CCA2 security, offering resistance to future quantum
both classical and quantum attacks. As part of the decryption.
Kyber family, it is efficient in terms of speed and
memory, making it practical for real-world use [NIST,
2024].

Key Pair A pseudorandom seed generates a public matrix, while | Provides

Generation small noise vectors are sampled to create the secret quantum-secure
and error terms. The public key results from a noisy cryptographic
matrix multiplication, while the secret key includes the | identities for
noise vectors and hashes needed for verification. This users and
ensures strong one-wayness under the MLWE services.
assumption [NIST, 2024].

Key The sender encrypts a randomly generated message Secures session

Encapsulation using the recipient’s public key to form a ciphertext. A | key exchange
shared secret is then derived by hashing both the during
message and the ciphertext. This ensures that the authentication
session key cannot be predicted or reconstructed or transactions.
without the correct private key [NIST, 2024].

Key The recipient uses their private key to decrypt the Ensures only

Decapsulation ciphertext and recover the original message. A legitimate
re-encapsulation check ensures message integrity and recipients can
prevents chosen-ciphertext attacks. If the check fails, access
fallback handling protects against side-channel leakage | confidential
[NIST, 2024]. session keys.

Key Rotation Key material is periodically refreshed by generating Helps maintain
new key pairs. This reduces exposure in case of long-term
compromise and supports cryptographic agility. It also | confidentiality
aligns with best practices for forward secrecy and and risk
regulatory compliance [Barker, 2020]. mitigation.

Table 4: MLKEM-1024 and Key Management for Investment Platform Security

2.5 User Authentication and Access Control

To meet both the functional and non-functional requirements, a range of user authentication mechanisms
and access controls are implemented in accordance with industry best practices, ensuring that only

authorised users can access sensitive financial data.

access control [Sandhu et al.,
1996].

Feature Detailed Explanation Suitability for Investment
Platform
Robust Utilises Argon2 hashing for Protects against unauthorised financial
Authentication secure storage of user data access by securing user
credentials [Biryukov et al., credentials [Django, 2023].
2016, OWASP, 2025c].
Role-Based Defines clear user roles (client, Prevents data misuse by limiting
Permissions advisor, admin) for appropriate | access according to role-specific

financial functions [Django, 2023].

Granular Access
Control

Ensures permissions precisely
reflect authorised activities
[Sandhu et al., 1996].

Reduces risk of internal breaches by
strictly controlling access to sensitive
investment data [Django, 2023].

Secure Session
Management

Implements timeouts and
session ID regeneration [Django,
2023].

Protects investment sessions from
session hijacking attacks and
unauthorised user impersonation
[Rescorla, 2018].

Audit Logging

Comprehensive logging of access
and security events [Scarfone
and Souppaya, 2006].

Facilitates compliance audits and
incident investigations in financial

services [OWASP, 2025a].

Table 5: User Authentication and Access Control Mechanisms

2.6 Data Integrity and Secure Communication

Robust measures are implemented to ensure data integrity and secure communication channels, safe-

guarding financial data against unauthorised modifications and potential cyber threats.

Feature Justification and Detailed Suitability for Investment
Explanation Platform

HMAC Detects unauthorised data Critical for ensuring integrity of
modifications using SHA-256 transaction records and financial data
signatures [NIST, 2008]. [NIST, 2015].

Collision Ensures small changes produce Protects financial records from subtle

Resistance distinct hash results, preventing | fraud attempts [Scarfone and
undetected tampering [NIST, Souppaya, 2006].

2015].

HTTPS HTTPS encrypts all traffic Essential for secure online financial
between client and server, transactions and client interactions
offering protection against data | [OWASP, 2025b].
interception, tampering, and
eavesdropping [Rescorla, 2018].

TLS Implements strong encryption Provides additional security layer for
and validation for HTTPS sensitive financial communications
[Rescorla, 2018]. [OWASP, 2025b)].

End-to-End Layered encryption for data at Ensures comprehensive data

Encryption rest and in transit [PyCA, 2023]. | protection essential for client trust in

financial services [Dworkin, 2007].

Table 6: Data Integrity and Secure Communication

2.7 System Diagrams

This section presents system diagrams illustrating the core cryptographic processes—encryption, decryp-
tion, password hashing—and system structure. These diagrams demonstrate how the implementation
aligns with industry standards and secure design practices.

Class Diagram

The following diagram illustrates the classes within my financial project. It shows how each class interacts
with each other through functions in order to create the final investment platform.

@ CustomArgon2Hasher

o algorithm : string = "argon2_custom®”
o ph : PasswordHasher

e encode(password, salt) : string
o verify(password, encoded) : bool
e safe_summary(encoded) : dict

o must_update(encoded) : bool

e salt() : string

(©) Helding

o portfolio : Portfolio
o stock : Stock
o shares : DecimalField

o _str_[): str |

(© rortfolioHistory

o portfolio : Portfolio
o timestamp : DateTimeField
o total_wvalue : DecimalField

o _str_():str

© InvestmentTransaction

o portfolio : Portfolio

o encrypted_stock : TextField

o encrypted_transaction_type : TextField
o encrypted_shares : TextField

o encrypted_price : TextField

o encrypted_timestamp : TextField

o timestamp : DateTimeField

o key_used : PQServerKey

o get_formatted_timestamp() : str
e _ str_ () :str

» O last_updated : DateTimeField
referenrcg_g,f

o
o

e

_,-ﬂ-""'-';

__belongs to

I (©) Profile

o user : User

o role : CharField
o

o

advisor : User [nullable]
encrypted_balance : TextField

o save(*args, **kwargs)
o balance() : Decimal
e _str_[):str

one-to-one

© stock

o ticker : CharField
o company_name : CharField
o last_price : DecimalField

@ _str_{):str

(© AuditLog

o timestamp : DateTimeField
o event : TextField
o user : User [optional]

o get_formatted_timestamp() : str | ——-ecords (aptional)
e _str_{):str — A
T @ User

senderfrecipient 3| «Django Users
@ Message —

o timestamp : DateTimeField

———

o sender : User -
o recipient : User
o encrypted_text : TextField

one-to-one

e get_formatted_timestamp() : str |
e _str_ () :str

Al @Portfulio 1
= o user : User

/-7 e _str():str

be-lirlgi_lg//

-

e

uses

© PQServerKey

o algorithm : CharField

o public_key : TextField

o private_key : TextField

o created_at : BigintegerField
o is_active : BooleanField

@ _ str_(): str

Figure 1: Class diagram highlighting key functions and classes

Encryption Process Activity Diagram

The following activity diagram illustrates the steps involved in encrypting a message (e.g., via the
encrypt_message function). It shows how the system retrieves or generates a key, derives a symmetric
key using HKDF, and uses AES-GCM for encryption.

?

Retrieve active PQServerkey ‘

‘ Generate new PQServerkKey

Extract server private key

‘ Extract new server private key

‘ Select appropriate salt and info parameters ‘

¥

I Derive symmetric key using HKDF ‘

v

‘ Generate a random nonce

v

l Encrypt plaintext using AES-GCM with symmetric key ‘

‘ Combine nonce, tag, and ciphertext

v

Basebd encode combined result

v

Prepend key ID to the encoded data

®

Figure 2: Encryption Activity Diagram

10

Decryption Process Activity Diagram

This activity diagram details the decryption process. The process involves extracting the key identifier,
retrieving the corresponding key, deriving the symmetric key, and finally decrypting the message.

b

Input encrypted message (“key id:encoded data®) |

v

l Split input to extract key ID and encoded data |

Y

‘ Retrieve POServerkey using key ID |

¥

| Extract server private key

v

| Select appropriate salt and info parameters |

¥

‘ Derve symmetric key using HEDF

:

l Base64-decode the encrypted data to obtain nonce, tag, and ciphertext ‘
hﬁ'“(Is ciphertextitag mmrma%

Fail decryption (raise error) ‘ | Decrypt ciphertext using AES-GCM with derived symmetric key

| Output plaintext ‘

®

Figure 3: Decryption Activity Diagram

11

Password Hashing Process Activity Diagram

The following activity diagram explains the password hashing process using the custom Argon2 imple-
mentation. It shows how the plain password is processed, salted, hashed, and then stored for secure user

authentication.

Receive plain password input

v

| Generate salt

Y

Hash password wsing Argon2 algorithm]

¥

Combine algorithm identifier with hash output |

¥

Store encoded password for user authentication |

®

Figure 4: Password Hashing Activity Diagram

Key Rotation Process Activity Diagram

The following activity diagram explains the key rotation process using the MLKEM1024 algorithm. It
shows how the current key is deactivated, a new key pair is generated, encoded, stored, and the rotation

is logged for auditing.

Receive key rotation reguest |

¥

| Set current POServerkKey as inactive |

¥

Generate new key pair using MLKEM1024

Y

Extract new public and private keys]

¥

Store new POServerkey in the key management system]

¥

Update system components with new key details l

¥

Log key rotation event for auditing

o

Figure 5: Key Rotation Activity Diagram

12

Component Diagram

This following component diagram illustrates a three-layer architecture—UI, business logic, and data—highlighting
how user requests flow from the interface (UI/Browser) through core application processes (encryption,

hashing, data handling) to storage (Cloud/SQL Server), ensuring secure data transmission and robust
permission controls.

Ul layer
& &)
ul Browser
Advisor Regqisiration Admin Loginfout Investment Message
Actions requests. Actions requests requests requesis
v

Business logic layer

Figure 6: Three-Tier Architecture with Security Controls

13

3 Implementation Details

This section details how the system secures financial data using Django and advanced cryptographic tech-
niques. The implementation relies on key libraries such as cryptography [PyCA, 2023] and quantcrypt
[Aabmets, 2024] (for encryption and key derivation), and yfinance [Aroussi, 2025] (for live stock data).
The following subsections describe each core component, with corresponding figures that highlight the
code.

3.1 Key Management

Key management is critical for long-term security. The system uses MLKEM-1024 for quantum-resistant
key encapsulation [NIST, 2024]. A new key pair (public and private) is generated, stored securely in the
database, and rotated periodically. Figure 7 illustrates the key management functions implemented to
support post-quantum security, while Figure 8 provides a working implementation of key generation
and storage.

ALGORITHM = "MLKEM1@

). first()

= generate_new_key()

keys cache = (

.algorithm,

64.bb4decode (key.public_key),
4.b6ddecode(key.private key)

return _server_keys_cache

kem_algorithm (
public_key, p kem_algorithm.keygen()

Figure 7: Post Quantum Key Management Functions

Key Management
Algorithm: MLKEM 1024
Server Public Key (Preview):

exOvIBdOPSOyNkKnp9spNQheL8maeofl... View Full Key

Rotate Keys

Figure 8: Post Quantum Key Management Working Example

14

3.2 AES Encryption and Decryption

Symmetric encryption is implemented in crypto_utils.py using AES-GCM [Dworkin, 2007, NIST,
2001], which ensures both confidentiality and integrity.

Deriving the Symmetric Key

Symmetric keys are derived from the MLKEM-1024 private key using HKDF with SHA-256, a fixed salt,
and a context-specific information string [Krawczyk and Eronen, 2010]. Figure 9 illustrates this key
derivation process.

derive symmetric key(salt:

if server priv

_. _, server_priv = get server keys()

irn HKDF(

algorithm=has

length=32,

salt=salt,

info=info,

backend=default backend()
).derive(server priv)

Figure 9: Derive Symmetric Key Function

Encryption and Decryption Processes

Encryption converts input text (UTF-8 encoded) into ciphertext using AES-GCM [Dworkin, 2007]. A
random nonce is generated to prevent replay attacks, and the nonce, authentication tag, and ciphertext
are concatenated and Base64-encoded. Figure 10 demonstrates the encryption process, while Figure 11
shows how the system reverses this operation during decryption.

symmetric_key = derive symmetric_|

plaintext = value.encode('utf-8")

nonce

cipher he yrithms ymmetric_| : (nonce), backend=default_backend())
encryptor =

ciphertext = encryptor.update(plaintext) + encryptor.finalize()

combined nonce + encryptor.tag + ciphert

symmetric d » (salt, info, server_priv)
combined = .b6 ode (encry d_value)
2 combined[:12
combined[12:28]
combined[28:

(symmetric_key), mo \(nonce, tag), backend=default backend
yptor()
decryptor.update(ciphertext) + decryptor.finalize()
return plaintext.decode(utf-

Figure 11: Decrypt Data Function

15

Balance Encryption and Decryption

To protect sensitive balance data, the system encrypts the balance by converting it to a string and
prefixing the ciphertext with the active key’s ID. This enables retrieval of the correct key during de-
cryption [PyCA, 2023]. Figure 12 shows the balance encryption function, and Figure 13 depicts the
corresponding decryption. Additionally, Figure 14 details how the encrypted balance is stored, while
Figure 15 and Figure 16 illustrate how the Profile model automatically decrypts and displays the
balance.

). First() generate_new_key ()

ode(.private key)
ypted decrypt_datalenc |_data t - ryption', server_priv)
return Decimal({decrypted wvalue)

Figure 13: Decrypt Balance Function

id g role _ P encrypted_balance P
[FK] bigint character varying (20) text

1 admin OtcBHCdAADGOGANNG/OhxrEtfemgl 6KW5204KiSCHNVZL

2 advisor cnT/XIPgWTwOKPNOIHZMOWKIFNIVTMIUXTKBC/6iHxtZ

7 client loraNSvDKgmAHASESxsb TK2Xzm 74+ KymNv1QkbV3cEW

Figure 14: Balance Encryption Implementation

16

default="c
5 null=

self.encrypted balance:
elf.encrypted_bala encrypt_balance

encrypt_balance(D nal(wvalue))

1f.user.username

Figure 15: Balance Decryption Implementation in Profile Model

Portfolio Distribution
Total Portfolio Value: £10000.00

Asset Value (£) Percentage (%)
Cash £4910.68 49.11%

PG £500.07 5.00%

TSLA £3979.36 39.79%

VZ £87.98 0.88%

BRK-B £521.91 5.22%

Figure 16: Balance Decryption Working Example

17

Sensitive Field Encryption and Decryption

General-purpose functions encrypt and decrypt other sensitive fields in the database [PyCA, 2023].
Figure 17 shows these functions, and Figure 18 provides an example of encrypted values. While
functional decryption can be seen in the admin dashboard within Figures 19, 20, and 21.

return decrypt_data(encrypted_wvalue, salt, info, server_p

Figure 17: Decrypt/Encrypt Field Functions

encrypted_stock P encrypted_transaction_type ’ encrypted_shares P
text text text

TPGTxKGS/PyApZaThlYX40E%i19vm3PHdxR45ze.. zg+ulL2wHoBkVVPYKCniZAnGuyd.JwrXgzCGjKEB+8LU... QfYkF3yc81GLv3aw+FngZiigGXdDYTRMETGXEQWI=
nlkod4S2HKJSGKO+RXThISDN+EFUIKTDeBEVVAFBE /7IvAytANSTOTsAtNI SHOD/Px8Rvr+DPE3bBrvMLEbW== = mLEE/h+xyJxgAUnBDIKWQOY/BXPjcdOKfKRpI9c=

Figure 18: Encrypted Fields Implementation

transactions = I

baze6d . beddecode(tx. key_used.private_key)

local_priv = active server_priv

decrypted_stock = decrypt_field(tx.encrypt "imw nt_stock",
ir ment stock en ion', local_priv)

decrypted_type = ed_tr ¥ F tment_type',
i local_priv)
shares_str = decrypt_field(tx.en 5,
g | tment) 1", local priwv)
price_str = decrypt_field(twx.encrypted_pr ' _price’,

, local priv}

investment price en on"

Figure 19: Decrypt Transactions Function

18

"»Recent Transactio

Timestamp

zaction_type }} { tx 2 3}

(.timestamp }}
{% empty

colspan="6

{% endfor

Figure 20: Decrypted Transactions HI'ML Template

Recent Transactions

1D Stock Type Shares Price (£) Timestamp

8 NFLX SELL 2.00 £960.29 2025-03-23 15:19:56
7 XOM BUY 3.00 £115.50 2025-03-23 15:07:09
6 NFLX BUY 4.00 £960.29 2025-03-23 15:07:01
5 GOOGL BUY 3.00 £163.99 2025-03-23 15:06:57
4 JPM BUY 3.00 £241.63 2025-03-23 15:06:53

Figure 21: Decrypted Transactions Working Implementation

19

Message Encryption and Decryption

For internal communications, messages are encrypted using a symmetric key derived with HKDF (using
dedicated parameters for messages) [Krawczyk and Eronen, 2010]. The active key is retrieved (or gener-
ated) and its ID is prepended to the ciphertext. During decryption, the key ID is used to fetch the correct
key [PyCA, 2023]. Figures 22 and 23 show the encryption and decryption functions, while Figure 24
provides an example of an encrypted message. Figure 25 displays the HTML for chat integration, and
Figure 26 demonstrates functional chat integration.

ilter({is_active=

decrypt_message(encrypted_messa

key_id str, encoded_data = encrypted_message.split(":", 1)}
key_id = int{key_id_str)

ey .objects.get (id=key_id)
MotExist:

tion', server_priv)

Figure 23: Decrypt Message Function

encrypted_text P t!mastarnp - feclplent_ld mdmjd
et timestamp with time zone integer integer
LSfiMcOtgKA7cPXumkP7WeudPyKZNHBS 1 +feyuN66RY840== 2025-03-23 15:04:38.283653+00 2 1
z4531g2H9CKdjzz SHJxntWOGaAMr+Nj9zT7BKG317400 2025-03-23 16:24:43.362214+00 1 2
5S:HN1FXx5NHCwIc2cR10gZf1imzeE3WwKSrJomchiVVZKZg 2025-03-23 16:28:54.272776+00 2 1

Figure 24: Example of an Encrypted Message

20

r
[

Ig
L

T
L

'
{1
'
{1

% extends “"base.html" ¥}

class="1
{% for part

= %}">{{ partner.username }}

% endblock %}

Figure 25: HTML for Chat Implementation

Conversations Chat with advisor

‘ Start New Chat

admin:

|II=:lHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o

15:04:38

user

Figure 26: Functional Chat Integration

21

3.3 Password Hashing

A custom Argon2-based hasher is used to secure passwords [Biryukov et al., 2016, OWASP, 2025¢]. It
enables precise control over time and memory parameters to resist brute-force attempts. New passwords
are hashed using this method. Figure 27 displays the custom Argon2 hashing function, while Figure 28
demonstrates a working example.

Hasher):

time_c
memory_cos

parallelis

salt len=16
, password, salt):

password)
ed_password}”

n, hash_str = encoded.split(

1f.ph.verify(hash_str, password)
2

safe_summary(self, encoded):

algorithm, hash_str = encoded.split(’
re n {

1 : algorithm,

: hash_str[:6] + '

+ hash_str[-6:]

must _update(self, encoded):
hm, hash_str = encoded.split('$", 1)

urn self.ph.check needs rehash{hash_str)

") .encode("utf-8"))[:16].decode("u

Figure 27: Custom Argon2 Hashing Function

password
character varying (128)

argon?2_custom$Sargon2idSv=195m=102400,t=4,p=25nCQpJsipcRvIxMK/BWcBKASxigZdWIBOPPmEgVroUSjifPJI9mPLuUAt4vZXvaH4/KE
argon?_customS$SargonZidSv=195m=102400t=4 p=256PiiKHxINr3HN02yYLO6owSoBMTRY 7+kdd /kOQBhFXaj994ldK528sKKONCRINREPVY
argon?2_custom$S8argon2idSv=195m=102400,t=4 p=25TYsLwF9t5gmW03fzmcbQnQS0Q3IEYOyr/8/hQBOHR/iABzv57zhGIPJs12QgWQQQCg

Figure 28: Custom Argon2 Password Hashing Working Example

22

3.4 Secure Communication and Audit Logging

Secure client-server communication is enforced via HTTPS/TLS [Rescorla, 2018]. The web server uses
SSL certificates (configured as shown in Figure 29) to encrypt traffic. Comprehensive audit logging is
achieved via the AuditLog model, which records critical operations along with event details, timestamps,
and responsible users [Scarfone and Souppaya, 2006, OWASP, 2025a]. These logs are displayed on the
admin dashboard to facilitate monitoring and auditing, as illustrated in Figures 30, 31, 32, and 33.
Furthermore, rate limiting was implemented to prevent brute force and DDOS attacks through the
django-ratelimit module [Django, 2023] as seen in Figures 34 and 35.

36080
_INCLUDE_SUBDOMAINS =
_PRELOAD =

_REDIRECT =

» on_delete S5.SET_NULL)

@login_required

role !
.error(request

er_keys()
[' pub).decode(ut
n.objects.all().order_by(

* tx.price f 4
_money / total_transactions if total_trans
5.all().order_by(-t)[:18]

: total users,
algorithm,
: server_public_key,
": total_transactions,
total_money,

1 average_transaction,

: transactions[:5],

1 render{request, ‘admin_ d.html", context)

Figure 31: Admin View Logs Function

23

class="mb-5
Audit Logs
class="table

=1

Timestamp

Event
User

for log

col

endfor %}

Audit Logs

Timestamp

2025-03-23 16:08:16

2025-03-23 15:52:48

2025-03-23 152:52:32

2025-03-23 15:52:28

2025-03-23 15:52:10

2025-03-23 15:51:55

2025-03-23 15:49:46

2025-03-23 15:49:39

in audit logs %}

log.get formatted times
log.event }}

B

span="3">No audit logs found.

Figure 32: HTML to Display Audit Logs

Event
Encryption keys rotated. Old keys archived, new key generated
Admin admin created user user.
User user deleted by admin admin.
User bob deleted by admin admin.
Admin admin created user bob.
User bob deleted by admin admin.
User admin logged in.

User admin logged out.

Figure 33: Working Audit Logs on Admin Dashboard

24

if log.user % a L H % BN/ AL

o

User

admin

admin

admin

admin

admin

admin

admin

admin

if period
seconds =

elif period
seconds =

ip = request.|
cache_key
current = cache.get{cache_|

E
if current
set(cache_key, 1, timeout=seconds)

count:

.incr{cache_|

.set({cache_key, 1, timeout=seconds)

& Mot secure

Too many requests. Please try again later.

Figure 35: Rate Limiting Working Example

25

3.5 Integration with Django and Interface Creation

The integration of cryptographic functions with Django follows a natural user journey: authentication,
data display, transactions, and role-specific dashboards [Django, 2023].

User Authentication Setup

User registration and login are secured using the custom Argon2 hasher [Biryukov et al., 2016]. Dedicated
views and HTML templates handle these processes. Figures 36, 37, 38, 39, 40, and 41 provide
examples of the login and registration implementation and their respective working examples.

login_view(request):
if request.method == "POST
username = request.POST.get(" rname”) .strip(}
\ request .POST.get(ord”}.strip()
authenticate{regue SEr Sername, password=password)

login{reques

1tlog.objer

ages.success{request,
if user.profile.role == "adn
return redirect('admin_:
if user.profile.role ==
urn redirect("ad

rn redirect{'portfolic')
pges . error{request,

return redirect("lo)
return render{reguest, "login.html®)

Figure 36: Login View Function

26

register_view{reguest}:
if request.method == '"POST":
form = RegistrationForm{request.POST)
if form.is_walid():
user = form.save()
user.profile.role = form.cleaned_data.pget(role")
if user.profile.role == “client’:
user.profile.advisor = form.cleaned_data.get('advisor')
user.profile.save()

AuditlLog.objects. create(
event="User {user.username} r
user=user

)

messapges . success{request, "Registrati

return redirect(" login')

else:

for field in form:
for error in field.errors:

messages.error{request, "{field.label}: {error}"}
for error in form.non_field errors():
messages.error{reguest, error)

return redirect("register')

elses
form = RegistrationForm()}
return render(request,

{% extends "base.himl™ %}
{% block content %}
class="card mx-auto
class="card-body"
class="card-title mb-3 text-cemter
method="P0OST"
1% csri_token %}
class="mb-3"
for="username" class="Fform-label":Username
class="form-contr id="username” required

style="max-width: 568

class="mb-3"
for="password” class="form-1

= 21" >Password
class="form-control” type="p

sword” name="password

Gl
a5

id="password" required
class="btn btn-primary w-188" type="submit":Login

class="text-
href="{% url ssword_reset' ¥}":Forgot Password?

{% endblock %}

Figure 38: Login View HTML Template

" style="min-height:

{{ form.username|add_class:"form-control™ }}

{{ form.email.label tag }}
{{ form.email|add_class:"form-control™ }}

(el tag
{{ form.passwordl|add_class:"form-control™ }}

class="mb-3"
rd2.label_tapg
: "form-comtrol™ }3}

[form.role.label t

{{ form.role|add_class:

{% endblock %}

Figure 39: Register View HTML Template

28

Login

Username

Password

Forgot Password?

Figure 40: Login View Working Example

Register
Username:
Email:
Password:
Password confirmation:
Role: Advisor:
Client v None v

Figure 41: Register View Working Example

29

Dashboard and Stock Data Integration

The client dashboard displays real-time portfolio data, integrating live stock data via yfinance [Aroussi,
2025]. Figures 42 and 43 show the view functions, while Figures 44 and 45 show the HTML templates.
Working examples can be seen in Figures 46 and 47.

@login_required

price

value
al_|

holdi

ser_balance

:h_percentagé

or item in holding data:
pct = (item E F lue * 188) if total portf
1 1

item['p =}
.append(

.stock. ticker,

1ding data,
Jdumps{chart_data),
alue’: total port
_percentage,
t{user_balance),

lio.html', context)

Figure 42: Portfolio View Function

30

stock_list_wiew(reguest):
default_tickers = [
\PL", "MSFT", "GOOGL", "AMZN®, “TSLA","BRK-B", "INI", "V", "WMT", "IPM",
"MAT, "MVDA"™, "HD™, "DI5™, "BAC", "XOM", "wI", "ADBE", "NFLX'
current_count = Stock.objects.count()
if current_count < 2@:
for ticker in default_tickers:
try:

yf_ticker = yf.Ticker(ticker)

info = yf_ticker.info

company_name = info.pget('shorthame") info.get (' longhame") ticker

history = yf_ticker.history(period="1d4")

if history.empty:

last_price = history['Close’].iloc[-1]

else:

last_price =

Stock.objects.update_or_create(
ticker=ticker,
defaults={
"Company_name ' @ Ccompany_name,
'last_price": last_price,
'last_updated': timezone.now

3
except Exception as e:
print{f"Error updating {ticker}: {e}")
stocks = Stock.objects.all().order_by('ticker')
stock_data = []
for stock in stocks:
update_required =
if stock.last_updated:
delta = timezone.now() - stock.last updated
if delta.total_seconds()} < 6@:
update_required =
if update_required:
try:
yf_ticker = yf.Ticker(stock.ticker)
history = yf_ticker.history(period="1d"}
b history.empty:
last_price = history['Close'].iloc[-1]
else:
last_price = stock.last_price
stock.last_price = last_price
ctock.last_updated = timezone.now()
stock.save()
except Exception as e:
print(f"Error updating {stock.ticker}: {e}"
last price = stock.last price
else:
last price = stock.last price
stock_data.append({
"ticker': stock.ticker,

company_name " : stock.company_name,
‘last_price': last_price,

)

return render(request, 'stock_list.html', {'stocks': stock data})

Figure 43: Stock List View Function

{% extends "base.html™

{% block comtemt %}
class="container my
class="text-center” ¥Your Investment Portfolio
class="text-center”:Cash Balance: £{{ cash_balance|floatformat:2 }}
Your Holdings

class="table table-striped
Asset Value Percentage (%)

Cash £{{ cash_balance|floatformat:2 }}
{{ cash_percentage|flostformat:2 }}%
{% for item in holding_data X}
{{ item.holding.stock.ticker }} £{{ item.value|floatformat:2 }}
{{ item.percentage|flostformat:2 }}%
{% empty X}
colspan="3":No holdings found.
{% endfor X}

Portfolio Distribution

wt-L Portfolio Value History
style="di ; justify-conten cenmter; "
id= :

class="col
style="wid
class="mb-3 text-cemnter”:Trade Stocks
method="post" action= url "cliemt_transa
{% csrf_token X}
class="mhb-3
for="ticker" class="form-label”:5tock Ticker
name="ticker® id="ticker" class="form-select” reguired
wvalue="":-- Select Stock --

{%¥ for stock im stocks X} value="{{ stock.ticker }]
{{ stock.ticker }} - {{ stock.company name }} {% endfor %}

Mumber of Shares
"shares" class="form-control
placeholder="Enter number of shares" required
class="d-fl
type=":
type="submit

{% extends "base.himl™ %}
1% block content %

class="c

!

Ticker
Company Name
Last Price
Invest

{% for stock in stocks ¥}

stock.ticker }}
stock.company_name I}

if stock.last_price %}
| stock.last_price|floatformat:2 }}

class="btn btn-primary":>Invest

{% empty %}

colspan="4" class="1t¢ center”:=No stocks available.

1% endfor %}

1% endblock %}

Figure 45: Stock List HTML Template

33

Your Holdings
Asset

Cash

PG

TSLA

VZ

ERK-B

MSFT

Value

£3027.30

£499.71

£4012.50

£87.84

£524.03

£1369.96

£786.04

Portfolio Distribution

Cash PG TSLA
vz BRK-B v
MSFT

Ticker Company Name
AAPL Apple Inc.
ADBE Adobe Inc.
AMZN Amazon.com, Inc
BAC Bank of America Corporation
BRK-B Berkshire Hathaway Inc. New
DIS Walt Disney Company (The)
GOOGL Alphabet Inc.
HD Home Depot, Inc. (The)
INJ Johnson & Johnson

Your Investment Portfolio

Cash Balance:

£3027.30

Percentage (%)
29.37%

4.85%

38.93%

0.85%

5.08%

13.29%

7.63%

Portfolio Value History

10,350
10,300
10,250
10,200
10,150
10,100
10,050
10,000

9,950

9,900

Portiolio Value (£)

Trade Stocks

Stock Ticker

-- Select Stock -- ~

Number of Shares
Enter number of shares

R g e

S

Change since start of day: 3.07%

Figure 46: Portfolio View Working Example

Available Stocks

Last Price Invest

£220.15
£395.58
£202.54
£43.07
£524.03
£99.85
£167.73
£360.51
£163.93

Figure 47: Stock List View Working Example

34

Purchase and Selling

Secure stock transactions update encrypted balances and holdings [PyCA, 2023]. Figure 48 shows the
transaction processing function, Figure 49 displays the corresponding HTML template, and Figure 50
provides a working example.

@login_required

client_transaction_wview(request}:

.role !

Y. First()

encrypt_field({stock.t
encrypt_field('B
. shares = encrypt_field(str
price = encrypt_field(

m

=4 m

encrypted share
ypted_price=e_pric
pted_timestamp=e

Figure 48: Transaction Processing Function

35

icker }}
any_name }}

:.last_price|floatformat:2 }}

anger”={{ error }}

">Buy Shares
%ell Shares

{% endblock X}

Figure 49: Transaction HTML Template

Invest in AAPL

Company: Apple Inc.

Current Price: £219.47

Shares: ‘ ‘

Buy Shares Sell Shares

Figure 50: Working Transaction View Example

36

Advisor Dashboard

Advisors have a dedicated dashboard that aggregates client portfolio data and supports key functions: the
advisor dashboard view function (Figure 51) aggregates client performance data, while the transaction
view function (Figure 52) enables them to initiate and manage buy/sell orders. The client detail view
(Figure 53) retrieves and displays detailed portfolio information, and the message view (Figure 54)
facilitates secure, encrypted investment recommendations. The corresponding HTML templates for these
functions are shown in Figure 55 (dashboard), Figure 56 (transaction interface), Figure 57 (client
details), and Figure 58 (messaging), while Figure 59 demonstrates full administrative integration and
system functionality.

@login_required

st.user) .order

otal_holding
.holdings.all(
tock.last_price) if holding k.last_price
(holding.shares) * price
ash + total_holdin, lue

k.ticker
tock.last_price) if holding.stock.last_price

o)

chart_data =

for item in chart_data if item[

Jjson.dumps(chart_data),

» Ccontext)

Figure 51: Advisor Dashboard View Function

37

_input
ion = request.

ient_id, role= - visor=request.user)

eate(

request.user.username} boug E :} s s of ker} at f for nt_user.username

shares

Figure 52: Advisor Transaction View Function

38

@login_required
advisor_client detail wiew(request, client_id}:

if reguest.user.profile.role 1= 'a

request.user)

olding.shares) * { {holding last_price)

value += value
_data.append(
i holding,

value,

2"z @,

total portfolio wvalue = cash + total holdinmgs walue

cash_percentage = (cash [total_portf value * 188) if total_port

f total_portfolio walue * 188) if total_portfolio_walue > @ else

sh,
e": cash_percentage

~ item in holding data:
chart_data.append
1 item["h .stock.ticker,
: item

: client_profile,
portfolio,
: holding_data,
dumps{ chart_data

cash_percentage,

Figure 53: Advisor Client Detail View Function

39

@login_required
advisor message view(reques

request.user.profile.role 1=
essages. errorrequest,
urn redirect("’ port

request.method == 'POS
recipient_username = reguest.POST.get{"re
message tex request.POST.get("mes '

recipient_username
or{ request,

recipient =

™. Doesh

recipient.username

Figure 54: Advisor Message View Function

40

History

Figure 55: Advisor Dashboard HTML Template

required

"+{{ client.user.username }}

ompany_name }}

rol® step="#.81" placeholder="E

Submit Purchase
Submit Sale

Figure 56: Advisor Transaction HTML Template

41

required

class="mk

Client Portfolios

{% if clients

Client Usernams

Portfolio Value (£)

{X¥ for client in clients X}

href="{% url 'advisor
{{ client.user.username }
£{{ client.portfolio value|floatformat:2 }]
{% endfor X}
{% else ¥}

Mo client portfolios found.
{¥ endif X}

Figure 57: Advisor Client Detail HTML Template

I STy le="h
Send Investment R
action= 1 "ad

Select Client
k recipien =g" class="form-select” reguired
-- Select Client --
value="{{ c] t.user.username }}">{{ cliemt.user.username }}
{% endfor X}

For="n

name=

placeholder="En

Figure 58: Advisor Message HTML Template

42

‘Welcome advisor! »

Advisor Dashboard

Client Portfolios

Client Username Portfolio Value (£)

user £10405.75
‘Buy/SeII Stocks for Client Send Investment Recommendation

Select Client Select Client

-- Select Client -- ~ -- Select Client -- ~
Stock Ticker Message

-- Select Stock -- R4 Enter your recommendation
Mumber of Shares

Enter number of shares

Submit Purchase Submit Sale Send Recommendation

Client Portfolio Distribution Client Portfolio Value History

Portiobo Value (K
0.500

Cash PG BRE-B
MSFT AAPL f

Change since start of day: 4.06%

Figure 59: Final Working Advisor Dashboard

Admin Dashboard and Additional Features

The admin dashboard offers a comprehensive overview of system operations, including audit logs, trans-
action summaries, key management (with key rotations), and user management [Scarfone and Souppaya,
2006]. The admin dashboard view function (Figure 60) displays aggregated system status, while the
delete user view (Figure 61) and create user view (Figure 62) facilitate account management. De-
tailed information on individual users is provided by the admin user detail view (Figure 63). The
corresponding HTML templates for these functionalities are shown in Figure 64, Figure 65, Fig-
ure 66, and Figure 67, while the final working examples on the dashboard (Figure 68), delete user
view (Figure 69), create user view (Figure 70), and user detail view (Figure 71) demonstrate the
fully integrated admin functionality.

43

@login_required
admin_dashboard_vi request):

USErs L 3 der_by('use
audit_logs i ts.all().order_by(" -timestamp”)[:5]

active_server_priv = get_server_ke
dencode{active pub_key).decode(

n.objects.all

ey_used.private_|

server_priv
_Field{tx.encrypted
decrypted type = decrypt_field(t
shares_str = decrypt_field(tx.encr

-cal_ﬁriv}

}

total transac
average_tra = total money / walid co if walid count
comt

Figure 60: Admin Dashboard View Implementation

44

@login_required
admin_user_delete_ wiew(reguest, user 1dj
if request.user.profile.role 1= "admin
essages.error{request, "Acces
~eturn redirect(’portfolic')
user_obj = get_ DbjECt ar 4@&[er, id=user_id)
if request.method == "POST':
'.::T_::.nbjects.create{
event=Ff"User {user_obj.username} deleted by admin {reguest.user.username
user=request.user
]
user_obj.delete()
e5s53ges. suCcess(reguest, User {user_obj.username
return redirect(’admin_das !

render{request, 'admin

Figure 61: Admin Delete User View Implementation

@login_required
admin_create_user_ wiew({reguest):
if request.user.profile.role 1= °
ess3ges.error{request, "Acces

return redirect(’portfolio’
if request.method == "POST':
form = RegistrationForm{request.POST)
if form.is walid():
user = form.save(commit=)

user.set_password(form.cleaned_datal '
user.savel)

user.profile.role = form.cleaned data.get('role’)
if user.profile.role == ‘client’:

user.profile.advisor = form.cleaned_data.get(advisor")
user. profile. save()

g.objects.create(
event=F"Adnin request.user.username} crested user {user.username}.”
user=request.user
messages . success{request, £ User {user.username} created
return redirect(’admin_dashboard®)

~ field in form:
qor error in field.errors:
nessages.error(request, "{field.label}: {error}")
~ error in form.non_field errors():

form = Registratio

render|request,

Figure 62: Admin Create User View Implementation

@login_required
admin_user_detail wview{request, user_id):
if regquest.user.profile.role != 'admin’:
es.error{request,
redirect(’ portfolio’)
user_obj = get_object_or_d8d{lUser, id=user_id)
profile = user_obj.profile
portfolio, t = Portfolio.objects.get_or_create({user=user_obj)
holdings = portfolio.holdings.all()
cash = float(profile.balance)
total holdings_value = @
holding_data = []
for holding in holdings:
if holding.stock.last_price:
value = float(holding.shares) * float{holding.stock.last price)
value = @
total_holdings_wvalue += walue
holding data.append(
nolding”: holding,
: value,
entage’: @,
)
total portfolio walue = cash + total_ holdings_walue
cash_percentage = (cash / total_portfolio_value * 188) if total_ portfolio_wvalue > @ else @
r item in holding data:
item['percentage 'walue'] f total portfolioc walue) * 188) if total_portfolio_wvalue > 8 else @
chart_data = [

=ntage”: cash_percentage

r item in holding data:
chart_data.append(
label®: item["holding'].stock.ticker,
: item["wvalue'],
centage™: item[’percentage’

)
extra_info = {}
if profile.role == : :

extra_info['advisor profile.advisor
elif profile.role == 'advisor':

extra_info['clients_: ‘rofile.objects. filter(
role="¢ , adwisor=user_obj
) .order_by(' user sername')

context = {

': user_aobj,
: portfolio,
: holding_data,
json.dumps{chart_data),
alue’: total portfolio walue,
: cash_percentage,
e_role’: profile.role,
't cashy
}
context.update(extra_info)
return render{request, 'admin_user_detail.html®, comtext)

Figure 63: Admin User Detail View Implementation

% extends "base.html™ ¥}
{¥ block comtent X}
b-4" =Admin Dashboard
Hello, {{ user.username }} ! ¥ou are logged in as

">Total Transactions

isplay-5">{{ analytics.total_transactions }}

">Total Money Moved (£)
nlay-5"»€{{ analytics.total_money_moved |floatformat:2 }}

e"hverage Transaction (£)
display-5">£{{ analytics.average transaction|floatformat:2 }}

class="mb
class="d- 1
User Management
href="{% url 'admin_create_use) btn btn-primary”>Create User

Total Users: {{ total_users }}

class=
class="t
class="t:

Username
Email
Role
Actions

{% for uwser in uwsers X}

href= url 'admin_user detail’ user.id %}":{{ user.username }}

{{ user.email }}
{{ user.profile.role }}

href="{% url 'admin user detail’ user.id %}’ 1 btn-sm btn-info">View
href="{% ur ¥’ btn b sm btn-danger”:Delete

{% empty X}
colspan="4">No users found.

{% endfor X}

Figure 64: Admin Dashboard HTML Template

User Details
Email: {

class=
class i
Portfolio D ribution
Total Portfolio Value:

Value (£) Percentage

1% endfo

No advisor assigned.

lient in client
endfor
b endif

":Back to Dashboard
Back to Dashboard

jack to Dashboard

Figure 65: Admin Delete User HTML Template

48

Lreate New User

H

orm-comtral® }

orm-control® }]'

el col -md-
form. role.label
form. role|add_cla

form
form. ads

{% endblock ¥}

Figure 66: Admin Create User HTML Template

49

User Details
Email: {

class=
class i
Portfolio D ribution
Total Portfolio Value:

Value (£) Percentage

1% endfo

No advisor assigned.

lient in client
endfor
b endif

":Back to Dashboard
Back to Dashboard

jack to Dashboard

Figure 67: Admin User Detail HTML Template

50

Admin Dashboard

Hello, admin! You are logged in as Admin

Total Money Moved (£) Average Transaction {Ej

£4685.00 £937.00

Totzl Transactions

20

User Management Create User

Total Usars:

Usemama Email Rolke Actions

advizor@test com advisor -m
e stanleyshawlhd @cloud.com client -m

admin adminiEadmincom admin

Audit Logs
2025-03-24 17:55:40 User admin logged in. admin
2025-03-24 175535 User advizar logged out. athiEsor
2025-03-24 174751 User advisor kegged in adviEnor
2025-03-24 17:47:44 User admin logged aut. admin
2025-03-24 16:06:28 Encryption keys rotated. Old keys archived, new key generated. admin
Key Management
Adgorithme MUKEM1024
Server Public Key [Preview):
A ULDEK 1z 2abCEFfFerMeX mBiilArH... |
Rotate Keys
Recent Transactions
] Stock Type Shares Price £} Timestamp
28 ADBE BUY 300 £391.1 2025-03-24 16:06:06
27 WZ BUY 200 £43.88 2025-03-24 151716
26 TSLA, SEL 1.00 £2T1.96 2025-03-24 15:13:30
25 TELA SELL 11.00 £274.04 M025-03-24 14:20:24
24 vz BUY 300 £4374 2025-03-24 14:25:06

Figure 68: Final Working Admin Dashboard

Confirm Delete User

Are you sure you want to delete the user user?

Confim Delete

Figure 69: Admin Delete User View Working Example

51

Create New User

Username:
|

Email:

Password:
Password confirmation:

Role: Advisor:

Client w MNone w

Figure 70: Admin Create User View Working Example

User Details for user

Email: stanleyshaw363@icloud.com

Portfolio Distribution
Total Portfolio Value: £10405.75

Asset Value (£)
Cash £3228.06
PG £408.87
BRK-E £526.15
MSFT £786.02
ALPL £659.70
Vv £2402.96
TSLA £817.28
VZ £307.37
ADEBE £1179.24

Percentage (%)
31.02%

4.79%

5.06%

7.55%

6.34%

BN C==h N PG BRK-B
N MSFT [AAPL v
7.86% TSLA M V= W ADEE

23.09%

2.95%

11.33%

Advisor Information

Assigned Advisor: advisor

Back to Dashboard

Figure 71: Admin User Detail View Working Example

52

4 Security Analysis

The cryptosystem for MyFinance Inc. has been designed with multiple layers of security controls to
ensure confidentiality, integrity, and authenticity of financial data. This section outlines the main threats
facing the system and highlights the mechanisms in place to mitigate them through the use of sequence
diagrams.

4.1 Replay Attacks

A replay attack occurs when an attacker intercepts a valid message and maliciously re-sends it to trick the
system. In this cryptosystem, every encryption operation includes a nonce—a 96-bit number generated
using os.urandom(12). This ensures that each encryption operation is unique. AES-GCM uses this
nonce to produce different ciphertexts even when the same plaintext is encrypted multiple times. Since
ciphertexts become non-deterministic, any replay attempts will result in authentication failure, rendering
replay attacks ineffective [Stallings, 2017] (see Figure 72).

Replay Attack Prevention
® ®

Client Attacker Server (AES-GCM)

Encrypted message (with unigue nonce)

Replay message AES-GCM uses a unigque nonce, so replayed messages
| fail authentication due to nonce mismatch.

Request rejected

Client Attacker Server (AES-GCM)

Figure 72: Replay Attack Example

4.2 Man-in-the-Middle (MitM) Attacks

MitM attacks occur when an adversary intercepts communication between two legitimate parties. MyFi-
nance mitigates this at multiple levels, as all communication between clients and the server is protected
using HTTPS, enforced by Django’s SECURE_SSL_REDIRECT and HSTS headers [Rescorla, 2018]. At
the cryptographic level, the key exchange protocol uses MLKEM-1024 (a post-quantum secure KEM)
[NIST, 2024], making it resistant even to powerful quantum-enabled adversaries. AES-GCM provides
authenticated encryption, so any tampered messages will fail decryption, even if successfully intercepted
[Dworkin, 2007] (see Figure 73).

MitM Attack Prevention

Client Attacker Server [AES-GCM)

HTTPS/TLS Connection Establishment

Tries to intercept TLS, HSTS, and S5L redirection protect
> | against interception and tampering.

Encrypted data exchange

Client Attacker Server (AES-GCM)

Figure 73: MitM Attack Example

53

4.3 Harvest-Now, Decrypt-Later Attacks (Post-Quantum Threats)

This emerging threat is based on the idea that encrypted data captured today may be decrypted in the
future by a quantum computer. To protect against this, the system uses the NIST finalist algorithm
MLKEM-1024 for key encapsulation [NIST, 2024]. By using a quantum-resistant scheme from the outset,
even future adversaries equipped with quantum technology will not be able to break historical encrypted
data [Chen et al., 2016]. This design future-proofs the application’s cyber security (see Figure 74).

Harvest-Now, Decrypt-Later Mitigation

Attacker Stored Encrypted Data Post-Quantum Key Exchange
Harvest encrypted data | Even if data is harvested, ;
» | guantum-resistant keys (MLKEM-1024) keep it secure.
Data remains secure

Attacker Stored Encrypted Data Post-Quantum Key Exchange

Figure 74: Harvest-Now, Decrypt-Later Attack Example

4.4 Data Breaches and Unauthorised Data Access

The application assumes that data breaches are highly feasible due to emerging technologies and undis-
covered bugs; this is mitigated through the use of symmetric encryption. User balances are encrypted
using AES-256 with per-field key derivation (HKDF) [NIST, 2001, Krawczyk and Eronen, 2010]. Invest-
ment transactions, stock tickers, transaction types, share amounts, and prices are individually encrypted
using context-specific salts and info strings. Each encrypted value includes the ID of the public key used,
so even archived data can be decrypted securely after key rotation. Moreover, access to user data is
also controlled via Django’s role-based permissions [Sandhu et al., 1996], ensuring that clients, advisors,
and administrators can only access authorised data in accordance with their roles [Django, 2023] (see
Figure 75). Additionally, industry reports highlight that data breaches are one of the most common
security incidents [Verizon, 2021].

Data Breach Mitigation

Attacker Database Encrypted Data (AES-256) Access Control (RBAC)

Data breach attempt » | Sensitive data is stored encrypted. ﬁ

Only authorised users can decrypt data. "

Attacker Database Encrypted Data (AES-256) Access Control (RBAC)

Figure 75: Data Breach Example

54

4.5 Brute Force and Credential Attacks

Brute force and credential attacks involve an adversary attempting to guess passwords through system-
atic trial and error or by leveraging high-performance hardware such as GPUs or ASICs to accelerate
password guessing. To mitigate these threats, the system enforces strong password policies through
rigorous validators that prevent the use of weak credentials [OWASP, 2025¢]. Furthermore, passwords
are hashed using a custom-configured Argon2 implementation configured with increased memory and
time parameters, which significantly increases the computational effort required for brute force attacks
[Biryukov et al., 2016] (see Figure 76). In addition, research has shown that multi-factor authentication
can further reduce the risks associated with credential attacks [Bonneau et al., 2012].

Brute Force Attack Mitigation

Attacker Login System
Multiple login attempts Rate limiting and strong hashing (Argon2)
> | increase computational cost and block abuse.

_ Authentication fails | Throttled

Attacker Login System

Figure 76: Brute Force Attack Example

4.6 Tampering and Integrity Violations

All encrypted fields use AES-GCM, which includes a built-in authentication tag. Any alteration of
the ciphertext, even by a single bit, results in decryption failure [Dworkin, 2007]. This ensures the
integrity of encrypted financial data such as balances, transactions, and messages. Additionally, for secure
transaction messaging, the system could be extended to include digital signatures using authenticated
ephemeral keys (already included in crypto_utils.py) [Menezes and Vanstone, 1997] (see Figure 77).

Tampering Prevention with AES-GCM

Attacker Encrypted Message (AE5-GCM) Decryption Module

Modify ciphertext

L.
F

The authentication tag in AES-GCM fails
if the ciphertext is tampered.

[Decryptiﬂ-n fails, alerting to tampering. D:[Attermnpt decryption

r

Attacker Encrypted Message (AES-GCM) Decryption Module

Figure 77: Tampering Attack Example

55

4.7 Key Compromise and Key Management Weaknesses

If a cryptographic key is compromised, all data encrypted with that key is immediately at risk. To reduce
this threat, the system employs robust key management strategies, including a key rotation mechanism
that allows administrators to securely deactivate old keys and generate new ones using MLKEM-1024
[Barker, 2020, NIST, 2024], thereby reducing the window of vulnerability. Every encrypted field includes
a reference to the key used, ensuring that historical data remains decryptable even after key rotation;
and the use of a cached key retrieval function enhances performance while limiting unnecessary handling
of key material [Boneh and Shoup, 2020] (see Figure 78).

Key Compromise and Rotation

Attacker Active Key Archived Keys Admin Historical Data

Atternpt to compromise key | | Regular key rotation minimizes exposure. 'ﬁ

Rotate key (deactivate old, generate new)

Used for decryption >

Arrﬁakpr Art‘lv!:\ Key Arrhwo.d.r(py-:. Adaun Historical Data

Figure 78: Key Compromise Mitigations Example

4.8 Privilege Escalation

Privilege escalation is a security vulnerability where a user gains unauthorised access to higher-level
permissions or functionality. In order to prevent this, role-based access control (RBAC) is strictly
enforced [Sandhu et al., 1996, Ferraiolo et al., 2003]. Only users with the admin role (set through the
superuser flag) can perform sensitive administrative operations, including key rotation, user management,
and audit log access. Advisors can view client portfolios, but cannot act outside their assigned clients.
Clients cannot access admin or advisor functionality. These restrictions are enforced both in the UI and
at the view-level using decorators and role checks [Django, 2023] (see Figure 79).

Privilege Escalation Mitigation
® ®
User Attacker Role-based Access Control (RBAC)

Legitimate access reguast

e
F

Unauthorised access attempt . | RBAC restricts access based on user roles. Iﬁ

Access denied

User Attacker Role-based Access Control (RBAC)

Figure 79: Privilege Escalation Example

56

4.9 Insider Threats and Auditability

The system incorporates auditing of sensitive operations. Actions like registration, login, transaction
execution, and message sending are logged using the AuditLog model. This log allows administrators to
trace potentially malicious or accidental misuse of the system and provides accountability for all users,
including insiders [Scarfone and Souppaya, 2006, OWASP, 2025a]. Research indicates that proper audit
logging is essential for detecting insider threats [Bohme, 2012] (see Figure 80).

Insider Threats Mitigation

Insider Audit Log Admin

Perform sensitive operation _ | Every critical action is logged for traceability. %

Audit review (forensics & accountability)

Insider Audit Log Admin

Figure 80: Insider Threat Mitigation Example

4.10 Message Interception and Spoofing

Message interception and spoofing involve attackers eavesdropping on or manipulating communications
between users. To mitigate this, all user-to-user messages (such as advisor recommendations) are en-
crypted using AES-GCM [Dworkin, 2007, Rescorla, 2018]. This ensures confidentiality, prevents unau-
thorised reading, even by database administrators, and detects any tampering through built-in authen-
tication mechanisms [Menezes and Vanstone, 1997] (see Figure 81).

Secure Messaging and Spoofing Prevention

Sender Attacker Receiver Encrypted Messaging (AES-GCM)

Send encrypted message

Attemnpt interception/speofing En;rtrptinn enSurfs messages remain confidential '7
and tamper-proof.

Valid decrypted message only

Sender Attacker Receiver Encrypted Messaging (AES-GCM)

Figure 81: Message Interception/Spoofing Mitigation Example

57

4.11 Denial-of-Service and Abuse

Distributed Denial-of-Service (DDoS) attacks overwhelm a target by flooding it with excessive traffic
from numerous compromised sources, rendering the target unable to respond to legitimate requests. The
system includes explicit rate limiting and connection restrictions. Specifically, rate limiting is used to
restrict login attempts or form submissions, ensuring that excessive requests are blocked, while connection
restrictions help enforce that only connections from certain approved IP addresses are allowed [Mirkovic
and Reiher, 2004]. This approach is further supported by modern web frameworks like Django [Django,
2023] (see Figure 82).

Denial-of-Service Mitigation

Rate Limiting Middleware
Attacker & Connection Restnctions

Excessive reqguests

E

Connection/Request Rejected ﬁ

» Request rejected (HTTP 429)

Attacker Rate Limiting Middleware
& Connection Restrictions

Figure 82: DDOS Mitigation Example

58

5 Testing and Evaluation

Extensive testing was performed on all components of the system to ensure it met the required security
and functionality criteria. The testing process involved unit tests for individual cryptographic functions,
integration tests for user operations and role-based functionalities, as well as performance and scalability
assessments [Myers et al., 2011, Beizer, 1995].

5.1 Unit Testing

This section highlights key unit tests that verify the correctness, robustness, and edge-case handling of
the cryptographic and hashing functions [Myers et al., 2011, Beizer, 1995]. Figures 83-90 show code
snippets of the tests and their intended purposes. Figure 83 shows my custom Argon2 hasher test,
ensuring that valid passwords are accepted and invalid ones are rejected.

ed_password = m
zelf.assertTrue(ch
self.assertFalse(check_pass

Figure 83: Argon2HasherTests verifying that the hashing works

Figure 84 highlights tests for encrypting unusually large balances, handling zero-value balances, and
verifying that tampered ciphertext or repeated nonces cause decryption errors.

t_balance(balanc
_balance(encrypted)

Figure 84: Unit Tests covering edge cases

59

Figure 85 illustrates more edge cases: attempting decryption with the wrong salt or info, missing
PQServerKey records, corrupt ciphertext, and encrypting/decrypting Unicode data.

ape_with_corrupted_data_raises_exception(self):

test_encry

value

salt =

info =

encrypted

decrypted = cryp itils.decrypt_field(encrypted, salt, info)
f.assertEqual({decrypted, wvalue)

Figure 85: Additional edge-case Unit tests

Figure 86 shows how I validate that newly generated keys become active and that the cryptographic
algorithm matches my “MLKEM1024” scheme.

self.assertTrue(key.is
self.assertEqual(key.algorithm,

= Cr uti
.aszertEqualk

Figure 86: Key Management Unit tests

60

Figure 87 focuses on key caching. The tests confirm that calling get_server_keys() repeatedly
returns the same active key rather than creating duplicates [Django, 2023].

Figure 87: Server Key Caching Unit tests

Figure 88 demonstrates my message-level encryption tests. It checks that valid messages are de-
crypted properly, while tampered with ciphertext triggers decryption failures.

5 derr-rpt me s
ecrypted_message)

Figure 88: Message encryption/decryption and Tampering Unit tests

61

Figure 89 verifies my field-level encryption logic, ensuring that string fields (e.g., transaction details)
can be securely stored and accurately recovered.

, info)
, salt, info)

salt, info)

info}

Figure 89: Field Encryption Unit tests

Finally, Figure 90 illustrates tests for encrypting and decrypting numeric balances, confirming that
tampering with the encrypted data raises an exception and that valid data is accurately restored.

test_encrypt_decrypt_balance{self):
balance = 5)
encrypted_balance .encrypt_balance({balance)
decrypted_balance = ¢ Jdecrypt_balance({encrypted_balance)
self.assertEqual(balance, decrypted_balance)

test_encrypt_balance 1r11.-:|11d[
balance
encrypted balance

ti l;~ . dn:c rypt_balance(tampered)

Figure 90: Balance Encryption Unit tests

62

Unit Testing Results

When running the tests as seen in Figure 91, all tests ran successfully except the test _encrypt_balance_zero
test as shown in Figure 92.

Figure 92: Unit Test Errors for Zero Balance Encryption

This error occurred because the encryption function initially used the condition shown in Figure 93,
which rejected zero values due to Python treating zero as false. As a result, encrypting a valid zero
balance raised a ValueError. To fix this, the condition was modified (see Figure 94) so that an error
is raised only if no value is provided at all [Beizer, 1995].

if balance is

Figure 94: Modified Condition Accepting Zero Balance

After fixing this issue, all unit tests passed (see Figure 95) confirming that all cryptographic func-
tions—encryption, decryption, hashing, and key management—work correctly under normal and adver-
sarial conditions [Myers et al., 2011].

Figure 95: Running Unit Tests (Successful)

63

5.2 Integration Testing

Integration tests were created to ensure that the different modules of the system work together seamlessly
[Sommerville, 2015]. The following figures present screenshots of tests for key end-to-end scenarios,
grouped by functionality, demonstrating both successful operations and proper error handling.

Admin Functionality Testing: Figure 96 displays the test for the Admin Create User functionality,
including validation error messages (e.g. for short passwords) [Django, 2023]. Figure 97 shows the test
verifying the Admin User Detail /Deletion process.

= self.client.post(url, valid post data, follow=
i }.fir

ile.ro

.profile.advisor, self.advisor_user)

: self.advisor_user.id,
}
response = self.client.post{url, invalid post data, follow=

content = response.content.decode(). lower()

nse = self.client.get{url, follow= }
t.decode().lower()
'y comtent

Figure 96: Test for Admin Create User functionality

64

test_admin_user_detail wview(self):

self.client.login{username:)

url = r:vwr;:t' 1 P .client_user.id]}
response = self.client. gutlurl}

ElF.ESSEFtEquulLFH" onse. status_code,

zelf.assertContains (response, self.client_user.username)

.client.logout(}
client.login{username="adv 'y password='
self.client.get(url,
ntent.decode(

= reverse

-

onse = self.client.get(url)
self.assertEqual (response.status_code, 288)
self.assertln ", response.content.decode().lower())

!

m m m

WA

ost{url, follow

by

Figure 97: Test for Admin User Detail/Deletion functionality

Advisor Transaction Testing: Figure 98 illustrates the test for an attempt to buy with insufficient
funds, and Figure 99 displays the test for a valid advisor buy transaction [Django, 2023]. Figure 100
shows the tests for valid sell transactions. Figures 101 and 102 present the tests for verifying that
negative share inputs are rejected and for attempts to sell when no holdings exist, respectively. Finally,
Figure 103 captures the test for the combined advisor transaction and normal view scenario.

@patch(
test_advis
fake df = : [158.88]1)

return_value = fake df

client_user.profile.balance = Decimalf(
client_user.profile.sav

ent.post{url, post_data, follow=

(portfolio=self.client_user.portfolio, stock
ylding when funds are i

Fnt _User. pru+1lw rw+rth from_db{

rEEFtEquulLEtlT client_user.profile.balance,

Figure 98: Test for advisor buy transaction with insufficient funds

65

]
J
ory .return_value

= mock_insta

self.assertEqual(self.client_user.pro

.history.return_value
return_valu mock_i
self.client.logi /i
url = r (

[
=

b=

balance, expected_balance)
foli cli

Figure 100: Test for valid advisor sell transaction

66

r.profile.balance
ng.objects.filter(
.portfolio, stoc f.stock

cts.filter(

filter(
ient_user.portfolio,

assertEqual(t

esh_from_db()
.profile.balance, initial_balance,

Figure 102: Test for advisor sell transaction with no holdings

67

lient.lngin
se = self.client.get(url

elf, mock_ticker):
150.80]})

ralue = fake_df

mock_ticker.return_value = mock_instance

ssertIshotone(holding, “Holdi
ssertEqual(holding.shares,

Figure 103: Test for combined advisor transaction and normal view scenario

Advisor Client Detail Testing: Figure 104 displays the test for the Advisor Client Detail func-
tionality, confirming that client-specific portfolio information is correctly presented [Django, 2023].

', password="

sertEqual(response.status_

rtInI" Fr (ent. ode() .lower(})

Figure 104: Test for Advisor Client Detail functionality

68

Non-Advisor Access Testing: Figure 105 displays the integration test confirming that non-advisor
users are correctly redirected when attempting to access advisor-only views [Django, 2023].

est_non_advisor_access_to_advisor views(self):

et{trans_url, follow=)
content.decod

Figure 105: Test for Non-Advisor Access to Advisor Views

Advisor Messaging Testing: Figure 106 shows the integration test outputs for sending messages
as an advisor, ensuring valid messages are delivered and invalid inputs (e.g., missing recipient or message
text) are handled correctly [Django, 2023].

i} L]

rn_value = dummy_template

', password="

.client_user.usernam
rl, post_data, fol
initial me

= self.client.pos

sertEqual(

@patch('d;
test_adv ~_message_vie
dumnmny_template yTem N » 1
mock_get template.return_value dummy_template

', password=

Figure 106: Test for Advisor Messaging Functionality

69

Client Detail Testing: Figure 107 displays the integration test verifying that client detail views are
properly shown to authorised users and restricted for others [Django, 2023].

self.client.logi

url = reverse('a

response = self.client.pet{url)
1f.assertEqual(response.status_code, 288)
1f.assertIn(self.client_user.username, response.content.decode
.client.logout(}
.client.login{username="client', password='pass')
= zel rue)
{ ent.decode()

LA

M M M M M

=h

ol

-

LA

Figure 107: Test for Client Detail View Functionality

Integration Testing Results

All but one integration test passed as seen in Figure 108. This failed because I was able to purchase a
negative amount of stock as there were no bounds checks in place for the advisor transaction view. In
order to fix this, I simply added bounds checking that ensured that the amount of stock purchased had
to be at least 0.01 share [Beizer, 1995] (see Figure 109).

_trans:

recent call last):
‘am Files\WindowsApps\
N Wiar

ertionError:

Figure 109: Transaction Handling Bounds Checking Fix

This testing process not only validated the functionality of individual functions, but also ensured that
all components of the system integrate seamlessly, resulting in a secure and robust financial application
[Sommerville, 2015].

70

6 Conclusion

This report details a cryptosystem for MyFinance Inc. that leverages robust encryption techniques in-
cluding AES-256 with GCM for authenticated encryption, HKDF for secure key derivation, and MLKEM-
1024 for quantum-resistant key management and rotation. The system secures sensitive financial data
by ensuring confidentiality, integrity, and authenticity while facilitating secure communication between
the company and its clients. It also integrates role-based access control into Django’s authentication
framework for clients, financial advisors, and system administrators, and employs HMAC to maintain
transaction data integrity. In addition, the system features scheduled background tasks that update
stock prices every 60 seconds independently of user activity. Despite challenges related to secure key
management and scalability, thorough testing confirmed that encryption, decryption, authentication,
and user workflows operate reliably. Future enhancements could include multi-factor authentication,
performance optimisations for background tasks, and further hardening of the key management system
as new quantum-resistant algorithms emerge.

71

References

Mattias Aabmets. Introduction to quantcrypt: A python library for quantum-resistant cryptog-
raphy. Medium, 6 February, 2024. Available at: https://medium.com/@mattias.aabmets/
introduction-to-quantcrypt-a-python-library-for-quantum-resistant-cryptography-00faec1cc032
[Accessed 29 March 2025].

Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley, New
York, 3rd edition, 2020.

Ran Aroussi. yfinance documentation, 2025. Available at: https://ranaroussi.github.io/yfinance/
[Accessed 29 March 2025].

Elaine Barker. Recommendation for key management: Part 1 — general (nist sp 800-57 part 1 rev. 5).
Technical report, National Institute of Standards and Technology, Gaithersburg, MD, 2020.

Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 2nd edition, 1995.

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New generation of memory-hard
functions for password hashing and other applications. In ITEFE Furopean Symposium on Security and
Privacy (EuroSE&P), pages 292-302, Saarbriicken, Germany, March 2016.

Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2020. [Online]. Available
at: https://crypto.stanford.edu/~dabo/cryptobook/ [Accessed 29 March 2025].

Joseph Bonneau, Cormac Herley, Paul C. Van Oorschot, and Frank Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, pages 553-567, 2012.

Rainer Bohme. A roadmap toward a theory of intrusion detection. In Proceedings of the 19th International
Conference on World Wide Web, pages 1063-1072, 2012.

Lily Chen, Meltem Chen, and Scott Jordan. Report on post-quantum cryptography, 2016. Available at:
https://csrc.nist.gov/projects/post-quantum-cryptography [Accessed 29 March 2025].

Django. Django documentation (version 4.2), 2023. Available at: https://docs.djangoproject.com/
en/4.2/ [Accessed 29 March 2025].

Morris Dworkin. Nist special publication 800-38d: Recommendation for block cipher modes of opera-
tion — galois/counter mode (gcm) and gmac. Technical report, National Institute of Standards and
Technology, Gaithersburg, MD, 2007.

European Union. General data protection regulation (gdpr), 2018.

David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access Control.
Artech House, 2003.

Hugo Krawczyk and Pasi Eronen. Hmac-based extract-and-expand key derivation function (hkdf).
Technical Report RFC 5869, Internet Engineering Task Force (IETF), 2010. Available at: https:
//datatracker.ietf.org/doc/html/rfc5869 [Accessed 29 March 2025].

Alfred Menezes and Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.

Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense mechanisms. ACM
SIGCOMM Computer Communication Review, 34(2):39-53, 2004.

Michele Mosca. Cybersecurity in an era with quantum computers: Will we be ready? IEEE Security &
Privacy, 16(5):38-41, 2018.

Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley, New York,
3rd edition, 2011.

NIST. Fips pub 197: Advanced encryption standard (aes). Technical report, U.S. Department of
Commerce, Washington, DC, 2001.

72

https://medium.com/@mattias.aabmets/introduction-to-quantcrypt-a-python-library-for-quantum-resistant-cryptography-00faec1cc032
https://medium.com/@mattias.aabmets/introduction-to-quantcrypt-a-python-library-for-quantum-resistant-cryptography-00faec1cc032
https://ranaroussi.github.io/yfinance/
https://crypto.stanford.edu/~dabo/cryptobook/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://docs.djangoproject.com/en/4.2/
https://docs.djangoproject.com/en/4.2/
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

NIST. Fips pub 198-1: The keyed-hash message authentication code (hmac). Technical report, NIST,
Gaithersburg, MD, 2008.

NIST. Fips pub 180-4: Secure hash standard (shs). Technical report, NIST, Gaithersburg, MD, 2015.

NIST. Fips pub 203: Module-lattice-based key-encapsulation mechanism (ml-kem) standard. Technical
report, NIST, Gaithersburg, MD, 2024.

OWASP. Logging cheat sheet, 2025a. OWASP Cheat Sheet Series. Available at: https:
//cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html [Accessed 29 March
2025].

OWASP. Manipulator-in-the-middle attack, 2025b. OWASP Web Security Knowledge Base. Available
at: https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack [Accessed
29 March 2025].

OWASP. Password storage cheat sheet, 2025c. OWASP Cheat Sheet Series. Available at: https://
cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html [Accessed 29
March 2025].

PyCA. Cryptography library documentation, 2023. Available at: https://cryptography.io/en/
latest/ [Accessed 29 March 2025].

Eric Rescorla. The transport layer security (tls) protocol version 1.3. Technical Report RFC 8446,
Internet Engineering Task Force (IETF), 2018. Available at: https://datatracker.ietf.org/doc/
html/rfc8446 [Accessed 29 March 2025].

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access control
models. IEEE Computer, 29(2):38-47, 1996.

Karen A. Scarfone and Murugiah Souppaya. Guide to computer security log management (nist sp 800-92).
Technical report, National Institute of Standards and Technology, Gaithersburg, MD, 2006.

Tan Sommerville. Software Engineering. Pearson, Boston, 10th edition, 2015.

William Stallings. Cryptography and Network Security: Principles and Practice. Pearson, Upper Saddle
River, NJ, 7th edition, 2017.

Verizon. 2021 data breach investigations report, 2021. Available at: https://www.verizon.com/
business/resources/reports/dbir/ [Accessed 29 March 2025].

73

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/

	Introduction
	Design Justification
	Functional Requirements
	Non-Functional Requirements
	Encryption and Hashing Algorithms
	Key Management and Post-Quantum Cryptography
	User Authentication and Access Control
	Data Integrity and Secure Communication
	System Diagrams

	Implementation Details
	Key Management
	AES Encryption and Decryption
	Password Hashing
	Secure Communication and Audit Logging
	Integration with Django and Interface Creation

	Security Analysis
	Replay Attacks
	Man-in-the-Middle (MitM) Attacks
	Harvest-Now, Decrypt-Later Attacks (Post-Quantum Threats)
	Data Breaches and Unauthorised Data Access
	Brute Force and Credential Attacks
	Tampering and Integrity Violations
	Key Compromise and Key Management Weaknesses
	Privilege Escalation
	Insider Threats and Auditability
	Message Interception and Spoofing
	Denial-of-Service and Abuse

	Testing and Evaluation
	Unit Testing
	Integration Testing

	Conclusion

